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Notation

AR Area of object field aperture

AR Area of image field aperture
2

ai  Object field weighting coefficients

bi Image field weighting coefficients

6Fourier-Bessel transform

CN 2Refractive index structure parameter

C.4F Channel-Natched Filter (Receiver)

CTF Coherent Transfer Function

COr Complete orthonormal (set of eigenfunctions)
D f Degrees of freedom for a near-field, circularly-

apertured, coherent object field propagated

through the turbulent atmosphere

D fo Degrees of freedom for a near-field, circularly-
apertured, coherent object field propagated
through free-space

D fo' Degrees of freedom for a near-field, one-

dimensional, incoherent object field propagated

through free-space

D fo /2 Degrees of freedom for a near-field, one-
dimensional, coherent object field propagated
through free-space

d i  Distance from receiving plane to image field
plane

do 0Distance from object field plane to receiving

plane

d 1 Diameter or width of object field aperture

d 2  Diameter or width of receiving or image field
aperture

D(r',F) Spherical wave structure function

DPhase structure function

P DOF Degrees of freedom of an image field
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A
E CMF( )Image field generated by Channel-Matched

Filter Receiver

EI( ) An object (input) field

E flip) Image field generated by Multiplicative-Phase
Receiver

EN(P) An additive background noise field

E Complex amplitude of a point source field

EO(i) An image (output) field
0

£An error constant

Spatial frequency vector

lJc Spatial frequency cutoff of a free-space
modulation transfer function

IoI Spatial frequency cutoff of a free-space
coherent transfer function

Spatial sampling frequency

I?'I Spatial frequency defined by I 12Xz/d2

HCMF(?) Coherent transfer function of Channel-Matched
Filter Receiver

HMP (?) Coherent transfer function of Multiplicative-
Phase Receiver

hCMF(i) Impulse response of Channel-Matched Filter
Receiver

hFS(r',r) Free-space impulse response

hp(r) Impulse response of Multiplicative-Phase

Receiver

hTB(r',F) Turbulent impulse response

h 21(',P) General impulse response

I(P ) Real and even intensity distribution function
of an incoherent object field

Im[ ] Imaginary part of quantity in brackets

IMSE Integrated mean square error
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J i(x) Bessel function of the ith order

K(;',i ) Imaging kernel

k Wavenumber defined by 2W/X

L Outer scale of the turbulent atmosphere0

Mean of log-amplitude fluctuations of the
turbulent atmosphere

MP Multiplicative-Phase (Receiver)

MTF Modulation Transfer Function - the modulus of
the optical transfer function

N Upper limit of a summation

N Amplitude of the ailtocorrelation of an additi-,
0 background noise field

ni Noise coefficient

OTF Optical Transfer Function

P( ) Free-space pupil function

Turbulent pupil function

P1  Object field plane

P 2 Receiving or image field plane

P3  Image field plane

Re [ Real part of quantity in brackets

R 1  Object field aperture

R 2  Receiving or image field aperture

R 3  Image field aperture

* 0 Coherence length of the turbulent atmosphere

* 1 Radius of object field aperture

*r2  Radius of receiving or image field aperture

r 1 Position vector in object field plane

1 r2 Position vector in receiving or image field
plane
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r 3 Position vector in image field plane

S (?) Coherent power density spectrumC

Sf Incoherent power density spectrum

SNR Signal to noise ratio

1:ACOH(1) Atmospheric coherent transfer function

lro(f) Free-space modulation transfer function

'COCOH(f) Free-space coherent transfer function

-LE(?) Fried's long-exposure, turbulent modulation
transfer function

FSE(?) Fried's near-field, short-exposure, turbulent
NF SE( modulation transfer function

Log-Amplitude fluctuations of the turbulent
atmosphere

z Distance between object field and image field
planes

2 Total variance of log-amplitude and phase

fluctuations of the turbulent atmosphere

2 Variance of additive background noise

2 Variance of log-amplitude fluctuations of

the turbulent atmosphere

:2 Variance of phase fluctuations of the turbulent

atmosphere

(F',i ) Phase fluctuations of the turbulent atmospi.,re
A
O(P' ) Estimate of optimum multiplicative phase

£0g(r) Error of optimum multiplicative phase estimate

Eigenfunction in object field plane

¢o( ) Optimum multiplicative phase

l(r) Eigenfunction in image field plane

kOptical wavelength

Power eigenvalue defined by IbiL2/Jai1 2
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) Dirac delta function

PS Field of view subtended by an object field
aperture when viewied from the center of an
image field aperture

DL Diffraction limited field of view of an image
field aperture

< Ensemble average
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Abstract

An imaging system's object field to image field trans-

formation operation is usually described in the (spatial)

frequency domain using the system's transfer function. The

limitation of this description is that the imaging system

must be space-invariant. In contrast, an object field to

image field transformation can be described in the spatial

domain without requiring that the system be space-invariant.

For the frequency domain, a summary of free-space and

turbulent transfer functions is presented. For the spatial

domain, the Normal Mode Approach to imaging is described

followed by a summary of spatial eigenvalue distributions

and degrees of freedom expressions. The effect of additive

background noise on the useable degrees of freedom of an

image field is studied. The spatial domain and frequency

domain are shown to be related when certain conditions are

satisfied, one of which is space-invariance.

The operation of two ideal, adaptive imaging receivers

(the Channel-Matched Filter and Multiplicative-Phase Receivers)

is described and their imaging performance is compared using

turbulent coherent transfer functions and minimum average

integrated mean square error expressions.
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I Introduction

Background

Imaging systems are typically composed of a channel

through which an object field is propagated and a receiver at

the channel output for imaging the object field. The manner

in which these systems transform an object field into an im-

age field is commonly described in the (spatial) frequency

domain by using transfer functions. A transfer function indi-

cates how the Fourier (sinusoidal) components of an object

field are transformed into the corresponding components of

an image field. If an object field is spatially coherent the

function is called a Coherent Transfer Function (CTF). If an

object field is spatially incoherent the function is called

an Optical Transfer Function (OTF) and its modulus is called

the Modulation Transfer Function (Ref 7:114).

In the frequency domain, the resolution capability of an

imaging system is sometimes defined in terms of the highest

nonzero spatial frequency (spatial frequency cutoff) of a

CTF or MTF. The higher the spatial frequency cutoff the

greater the resolution capability of an imaging system. For

propagation of an object field through free-space the spatial

frequency cutoff is due to the diffraction effects of the

finite apertures of an imaging receiver. The free-space cut-

off is the highest resolution attainable by an imaging sys-

tem.

(When the lack of space-invariance in an imaging system

17
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prevents the use of transfer functions, it is useful to be

able to describe imaging in another domain called the spatial

domain. In the spatial domain, an object field to image field

transformation is described in terms of object field and image

field spatial modes and spatial eigenvalues. A spatial eigen-

value indicates the power loss associated with a single object

field spatial mode to image field spatial mode transformation.

When the spatial eigenvalues are ordered in magnitude (highest

to lowest), they form a distribution that characterizes the

modal transformation of an imaging system.

In the spatial domain, the resolution capability of an

imaging system is usually defined as the number of nonzero

eigenvalues in the spatial eigenvalue distribution. This num-

ber is called the degrees of freedom (DOF) of an image field.

The greater the number of DOF of an image field, the greater

is the resolution capability of an imaging system. The DOF

of an image field depend on the geometry of an imaging system,

the wavelength of the propagated object field and the propaga-

tion medium.

Another spatial domain resolution measure is the inte-

grated mean square error (IMSE) of the image field. The error

is the difference between the image field produced for.free-

space propagation and either the image field produced for

propagation in other media or for additive background noise.

The IMSE of the image field is expressible in terms of the

2
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DOF of the image field.

Objectives

This thesis has three objectives. The first objective is

to describe the Normal Mode Approach to spatial domain imag-

ing and to present spatial eigenvalue distributions and DOF

expressions associated with that approach. The second objec-

tive is to show how, and under what conditions, the spatial

domain is related to the frequency domain. The third objec-

tive is to compare two ideal adaptive imaging receivers using

their turbulent CTFs and the minimum average IMSEs of the image

fields they generate. The receivers, to be described later,

are the Channel-Matched Filter (CMF) Receiver and the

Multiplicative-Phase (MP) Receiver.

Organization

Chapter II is a summary of the CTFs and MTFs for an ob-

ject field propagated through either free-space or the turbu-

lent atmosphere.

Chapter III is a description of the Normal Mode Approach

to spatial domain imaging, a summary of spatial eigenvalue

distributions and DOF expressions, and an examination of the

effect additive background noise has on the useable DOF of an

image field. In addition, Chapter III shows how the spatial

domain and the frequency domain are related.

Chapter IV is a description of the CMF and MP Receivers

3
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and a derivation of turbulent CTFs and image 
field, minimum

average IMSE expressions for both receivers. 
This chapter

is also a comparison of the resolution capabilities 
of the

receivers.

Chapter V is a summary of conclusions and 
a discussion

of areas requiring further study.

4
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II Frequency Domain Imaging-Transfer Functions

The purpose of this chapter is to present, as background

material, the coherent transfer functions (CTFs) and modula-

tion transfer functions (MTFs) of an object field propagated

through either free-space or the turbulent atmosphere. The

first section of this chapter defines the imaging system

geometry used- in calculating the CTFs and MTFs. The next

section is a summary of free-space CTFs and MTFs, and corre-

sponding spatial frequency cutoffs, for the defined geometry.

The final section is a summary of turbulent CTFs and MTFs.

General

Figure I shows an imaging system composed of an object

field plane P1 , receiving plane P2, and an image field plane

P3. P2 has a circular aperture R2 of diameter d2. The region

between P1 and P2 is called the propagation channel. The

channel may be either free-space or the turbulent atmosphere.

The region between P2 and P3 is the imaging receiver. This

region could include optical elements but for simplicity it is

assumed to be a free-space channel without such elements.

The receiving plane P2 is therefore both the input to the

receiver and the output of the propagation channel. The imag-

ing system of Figure 1 is assumed to be linear and space in-

variant. This assumption must be made if transfer functions

are to be used to characterize the object field to image field

transformation of the imaging system (Ref 7:19).

5
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RECEIVING PLANE P2

- PROPAGATION -RECEIVER-

r 1 CHANIEL r 2

L OBJECT FIELD PLANE Pl

II7AGE FIELD PLANE P3

Figure 1 - Geometry for Calculation of Transfer Functions

Free-Space

Assume that the propagation channel of Figure 1 is free-

space. Associated with the circular receiving aperture R2

of Figure 1 is a free-space pupil function called P(!2

P(P 2 ) = circ(2F 2 i/d2) (1)

where

circ(x) = i ; x 1/2

(0 ; otherwise (2)

6
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Goodman has shown (Ref 7:111) that for a coherent object

field in PI, the free-space CTF, called ZOCOH(?), is

oCOH(?) = P(Ndill) (3)

where \ is the optical wavelength of the object field, di is

the length of the propagation channel, and 1J1 is a spatial

frequency magnitude. Combining Eqs (1) and (3) yields

ZCOCOH¢() = circ(2d\diJJ/d 2) (4)

From Eq (4), the CTF spatial frequency cutoff, called

1?oi, is

II = d 2 /2Xdi (5)

Goodman has shown (Ref 7:116) that for an incoherent ob-

ject field in P1 , the free-space MTF, called 0(?), is the

convolution of the pupil function of Eq (1) with itself.

Completing this convolution yields

2[cos-'(XdilfI/d 2) - Ad1iJI/d,)

Oro()1 -[- ldl/d) ] w Xdiei 2

0 ; otherwise (6)

7
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From Eq (6), the 14TF spatial frequency cutoff, called

?c kI is

K!c = d 2 / Xdi (7)

A comparison of Eqs (5) and (7) indicates that the spa-

tial frequency cutoff for an incoherent object field is twice

the cutoff for a coherent object field. This does not imply,

however, that incoherent object fields yield "better" image

fields than coherent object fields. As Goodman points out

(Ref 7:125), the two cutoff frequencies describe resolution

for different image quantities and are therefore not compa-

rable. Equation (5) is the spatial frequency cutoff for a

function which produces an image field amplitude distribution

while Eq (7) is the cutoff for a function which produces an

image field intensity distribution (power density).

Turbulent Atmosphere

Assume now that the propagation channel of Figure 1 is

the turbulent atmosphere. An object field propagating through

the turbulent atmosphere is effected by multiplicative log-

amplitude, X(I 2, I1 ) and phase, O(r 2 ,11 ), fluctuations.

X(i 2,I) and 4(F 2 ,i') are Gaussian random variables

(Ref 17:209). Their first and second order statistics are

given in Appendix A. Since X( 2 , 1) and ( 2 ,r 1 ) are in

general functions of both the object field plane and the re-

ceiving plane, they violate the space invariance required

8
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for obtaining transfer functions. There is a condition, how-

ever, under which X(r 2,r I ) and O(r 2,F1 ) can be expressed as

functions of only the receiving plane so as not to violate

the space invariance of the imaging system. The condition is

that the maximum spatial extent of an object field in P1 of

Figure 1 be less than an atmospheric coherence length r0

(Ref 15:462). ror a spherical-wave object field, ro is de-

fined as (Ref 8:550)
d _3

rO = do  .423 k2 C2(z)Z3 dz] (8)

where k = 21r/X is the wave number of the object field, d0
2o

is the length of the propagation channel, and CN2 (z) is the

refractive-index structure parameter of the turbulent atmos-

phere (Ref 9:1526). For X= 0.55,q and a vertical propaga-

tion path, r0 is approximately 11 cm (Ref 5:2622). When the

object field meets the above condition it is said to lie with-

in an isoplanatic patch. Since most object fields are spa-

tially larger than an isoplanatic patch, isoplanatism is a

severe (but necessary) restriction for obtaining a turbulent

CTF.

When isoplanatism is a valid assumption, there is asso-

ciated with the circular receiving aperture R2 of Figure 1

a "turbulent" pupil function called P(!2):

2 P(i2)exp [X(I 21) + J 0(1 F2 1)] (9)

9
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where P( 2 ) is defined by Eq (1). Goodman has shovm

(Ref 7:121) that for a coherent object field in P1 of Figure 1

the turbulent CTF, called VCOH(?), is

o P(X d J) (10)

Combining Eqs (3), (9) and (10) yields

TCOH~f = VO..OH()exp[X(XdiJI) + jo(Xd~ifI)]
(11)

The ensemble average of Eq (11) with respect to the

random variables X(Xdi i f) and 0(Xdilj) is

>= Z'o.COH()<exp[X(Xdikl)

+ j 0(X\diI] (12)

It is shown in Appendix A that Eq (12) is equivalent to

<1V0H(1)> = "[OCOH()exp[-V2 /2] (13)

where V2 = + , and 2 and V2 are the variances

of X(: 2 ) and O(P2) respectively. Following Fried's example

(Ref 4:1375), the exponential in Eq (13) can be thought of as

an atmospheric CTF, called VACOH(?). Equation (13) is then

10



< 0 ( )> O _COCH(O )  TA C0H(l) 
(14)

For a spherical aave, Greenwood has indicated (Ref 8:550)

2
that V- of Eq (13) is

5
= 4.93 (L /r )3 (15)

where r0 is the atmospheric coherence length defined by Eq (8)

and L is the outer scale of the turbulent atmosphere. A

typical value for L is 100 meters or one-fifth the height

above the ground, whichever is less (Ref 9:1527). Substitut-

ing Eq (15) into Eq (13) gives

TCOH(f)2 = CO-COH(f)exp-2.47(L/r o0 ] (16)

Since the exponential in Eq (16) is not spatial frequency

dependent, the spatial frequency cutoff of the turbulent

CTF is the same as the spatial frequency cutoff of the free-

space CTF. However, the amplitude of the turbulent CTF is,

for all spatial frequencies, smaller than the amplitude of

the free-space CTF since L0 is larger than r0  The amplitude

attenuation is usually due to turbulence-induced phase fluc-

tuations rather than to log-amplitude fluctuations since V2

20
is usually much larger than V2 (Ref 8:550).

in reference 4, Fried has derived expressions for long

and short-exposure turbulent MTFs. Long-exposure means that

11



the object field propagated through the turbulent atmosphere

is viewed over a long enough time such that the turbulent MTF

is equal to its ensemble average. Short-exposure means that

the propagated object field is not viewed long enough to

justify equating the turbulent HTF to its ensemble average.

For short exposures, Fried has considered both near-field and

far-field object fields. With reference to Figure 1, near-

field means d2 >> 1 while far-field means d2 << _V J .
Only the near-field case is presented here.

Fried's ensemble-average, long-exposure, turbulent NITF,

called <C LE is

c'L ?>='o(?)exp3.44( XdJTJ/r 3] (17)

where d4 is defined in Figure 1 ard ro is defined by Eq (8).

The average of Eq (17) is an average over many different expo-

sures. Although the exponential in Eq (17) is similar in

form to the exponential in Eq (16), their effects are differ-

ent. In Eq (16) the exponential represents a constant ampli-

tude attenuation for all spatial frequencies while in Eq (17)

the exponential is a spatial frequency dependent attenuation.

Fried's ensemble-average, near-field, short-exposure,

turbulent r4TF, called <NF CSE(?)>, is

5
<NF 'rSE?)> = 'C0()exp 3.44(Xdil l/ro) 3

12
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[- (XdiJI/d 2)2](

where d 2 is the diameter of the circular receiving aperture

of Figure 1. An examination of Eq (18) indicates that

< NFIrSE (?)>approaches the free-space :MTF, to(?), as

approaches d/,d.. From Eq (7), d /X d is the spatial fre-
2 1 2 i

quency cutoff of the free-space MTF.

All of the CTF and MTF expressions in this chapter are

based on the assumption that the imaging system of Figure 1

is linear and space-invariant. When space-invariance is not

a valid assumption, CTF and MTF expressions are meaningless.

The loss of these expressions makes a frequency domain de-

scription of an object field to image field transformation

very difficult. Fortunately this transformation can be de-

scribed in a different domain without having to assume space-

invariance. The other domain is called the spatial domain

and it is the subject of the next chapter.

13
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III Spatial Domain Imaging

This chapter has four purposes. The first purpose is

to explain the Normal Mode Approach to spatial domain imag-

ing. The second is to present spatial eigenvalue distribu-

tions for propagation of coherent or incoherent object fields

through either free-space or the turbulent atmosphere and to

give expressions for the degrees of freedom (DOF) of the re-

sulting image fields. The third purpose is to determine the

effect additive background noise has on the DOF of an image

field. The final purpose is to show how, and under what con-

ditions, the spatial domain is related to the frequency domain.

The sections of this chapter are arranged in the same order

as the purposes above.

Normal Iode Approach

Figure 2 shows the imaging system geometry to be used in

explaining the Normal Mode Approach to spatial domain imaging.

P1 is an object field plane and P 2 is an image field plane.

The region between P1 and P 2 is called the propagation chan-

nel. Therefore, P 2 is not only an image field plane but also

the output plane of the propagation channel. In later sec-

tions of this chapter the channel is either free-space or

the turbulent atmosphere, but for now it is a general channel

with a general impulse response called h2 1 (r2,r1 ). The pur-

pose of aperture R1 of Figure 2 is to define the spatial ex-

tent of the object field as it enters the propagation channel.

14



Aperture R2 serves the same purpose for the image field at

the output of the propagation channel. In this section, the

shapes of R1 and R2 are arbitrary but in later sections they

are slit or circular apertures. Since in the Normal Mode

Approach the spatial extents of object and image fields are

defined in their respective planes, a receiving plane and a

receiving aperture are not required in Figure 2 as they are

in Figure 1. The imaging system of Figure 2 is linear but

not necessarily space-invariant.

IMAGE FIELD PLANE P 2

PROPAGATION CHANNEL

R R

OBJECT FIELD PLANE P1

Figure 2 - Geometry for Normal Mode Imaging

In the Normal Mode Approach an object field EI(F 1 ) in

of Figure 2 is expressed as a weighted sum of a complete ortho-

normal (CON) set of spatial eigenfunctions (spatial modes) as

15



shown below:

E1 ( 1 ) Z Zai 1i() (19)
i=1

where the 0i I ) are a CON set of spatial eigenfunctions

defined in R and th. object field weighting coeffi-

cients defined by

r *

ai = fE I (71 ) i (rl)d 1  (20)
R1

Likewise, an image field E (P2 ) in R2 of Figure 2 is ex-

pressed as a weighted sum of a CON set of spatial eigenfunc-

tions (spatial modes) as shown below:

E0 (r2) = Zbi li( 2) (21)
i =1

where the Ti (F2 ) are a CON set of spatial eigenfunctions de-

fined in R2 and the b i are image field weighting coefficients

defined by

bi = 1 Eo (r2 ) 'i*(72)dP 2  (22)
R2

In addition to Eq (21), the image field is expressed in

terms of the object field and the general impulse response of

the propagation channel by using the Huygens-Fresnel Principle

(Ref 2:Chap 6):
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E(r 2 ) = fEI( 1 )h2 1 (P2 ,Fl)d:1  (23)
R1

The Normal Mode Approach describes an object field to

image field transformation by describing how much of the

power of each of the spatial modes of the object field is

transmitted through the propagation channel to the corre-

sponding mod6s of the image field. On a per mode basis the

fraction of power transmitted is given by the ratio of

I bit2 to jail 2 This ratio is defined as

I b11j2/ jai 2  Xi (24)

where is called the ith power spatial eigenvalue of the

propagation channel. In the remainder of this thesis Xis

referred to as simply the ith spatial eigenvalue. The square

root of the ith spatial eigenvalue is related to the ith spa-

tial modes of the object and image fields, and to the general

impulse response of the propagation channel, by

'iN T Pfi(r2) = ( 21(P2'1) dF (25)
R 1

Equation (25) is derived in Appendix B. In Appendix B

it is shown that one way Eq (25) is satisfied is for

X i 0p(r') = fK(F 1 ',i 1 ) 0( )dFl ; F1 'ER 1  (26)
R 1
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where

K(iZ 1i I) = h2 (i 2 rl)h2 1 ( 2 1')d' 2  ; I C R ,

2 (27)

In Eqs (26) and (27), K( 1 ',r1 ) is called an imaging

kernel. Equation (26) is called a Fredholm Equation. For

free-space propagation, Slepian and Pollack have shom

(Ref 16:57) that the spatial eigenfunctions Oi(!l) that

satisfy Eq (26) are called prolate spheroidal wavefunctions.

Using these wavefunctions, Eq (26) can be solved for free-

space spatial eigenvalues. The eigenvalues can be ordered

such that i - i+ The ordered spatial eigenvalues

form a distribution that charactarizes the modal transforma-

tion of an imaging system. The number of nonzero spatial

eigenvalues in the spatial eigenvalue distribution is called

the degrees of freedom (DOF) of an image field. The greater

the number of DOF of an image field, the greater is the reso-

lution capability of an imaging system.

For propagation through the turbulent atmosphere, the

imaging kernel and spatial eigenfunctions are random varia-

bles. Since the spatial eigenfunctions Oi(Fl) that satisfy

Eq (26) are not known, Eq (26) cannot be solved for turbulence

spatial eigenvalues. Therefore, turbulence spatial eigen-

values are also random variables. Shapiro has shown

(Ref 13:2616), however, that turbulence spatial eigenvalues

exhibit the same near-field and far-field distribution

18
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behavior as free-space spatial eigenvalues. Spatial eigen-

value distributions for free-space and the turbulent atmos-

phere are presented in the next section.

Eigenvalue Distributions

Free-Space - The first free-sapce, spatial eigenvalue

distribution presented is that for a circularly-apertured,

coherent object field and a circularly-apertured image field.

Circularly-apertured means that the object and image fields

are spatially limited to circular regions. Specifically,

this means that the object field aperture R1 of Figure 2 and

the image field aperture R2 of Figure 2 are circular aper-

tures of diameters dI and d2 respectively.

The second free-space, spatial eigenvalue distribution

presented should be that for a circularly-apertured, incoher-

ent object field and a circularly-apertured image field. Un-

fortunately, this case is not only not found in the literature

but it is also difficult to derive. Therefore, the second

free-space spatial eigenvalue distribution presented is that

for aj one-dimensional, incoherent object field and a one-

dimensional image field. One-dimensional means that aper-

tures R and R of Figure 2 are slit apertures of widths d1 2 1
and d2 respectively.

The final free-space spatial eigenvalue distribution

presented is that for a one-dimensional, coherent object field

and a one-dimensional image field. This type of coherent

19
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object field is considered in addition to the circularly-

apertured, coherent object field because its spatial eigen-

value distribution is used in the last two sections of this

chapter. In all the distributions presented, the spatial

eigenvalues are ordered such that iX i+1 "

For the case of a circularly-apertured, coherent object

field, Shapiro has shown (Ref 13:2615) that the near-field,

free-space, spatial eigenvalues exhibit the following rectan-

gular behavior:

I ; i !Df i 21 , i integers

0 ; i >Dfo (28)

where

D o Od1 d2 14X)2 (29)Dfo = (lTdld2/4Xz)2(9

The near-field qualification of Eq (28) means that

Dfo >> 1. For a near-field, circularly-apertured, coherent

object field (of diameter d1 ) propagated a distance z through

free-space, Dfo is called the number of DOF of the resulting

circularly-apertured image field (of diameter d2 ). If the

object field is in the far-field (Dfo << 1), then there is

only one spatial eigenvalue and its value is D fo. In addi-

tion, the image field of a far-field object field has only

one DOF. This would be the case for a point source.

Equation (29) is derived by combining Eqs (26) and (28),

as is shown in Appendix C. Alternatively, Eq (29) can be
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derived using the Sampling Theorem. The SamplIng Theorem

says (Ref 6:93) that the number of DOF of an image field is

obtained by dividing the solid angle subtended by the object

field aperture R1 (when viewed from the image field aperture

RS) by the diffraction limited field of view of the image

field aperture R The Sampling Theorem derivation of Eq (29)

is showm in Appendix D.

The spatial eigenvalue behavior given by Eq (28) is

illustrated by the distribution of Figure 3.

SI I I

1 2 3 4 .. . Dfo (Td I /4Xz) i

Figure 3 - Spatial Eigenvalue Distribution for Near-Field,

Circularly-Apertured, Coherent Object Field

Propagated through Free-Space

For the case of a one-dimensional, incoherent object

field, Bendinelli, et. al.$ have shown (Ref 1:1500) that the

near-field, free-space, spatial elgenvalues exhibit the
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following triangular behavior:

1 - (1/D'fti ; D ' i -I , iintegers• i (i/fo'i ; fo

X i i>D

0 i > D fo' (30)

where

Df.= dId2/Xz (31)

The near-field qualification of Eq (30) means that

D >> 1. For a near-field, one-dimensional, incoherentDfo

object field (of width dI ) propagated a distance z through

free-space, Dfo' is called the number of DOF of the resulting

one-dimensional image field (of width d2 ). If the object

field is in the far field (Dfo' << 1), then there is only

one spatial eigenvalue and one DOF of the image field. How-

ever, Bendinelli, et. al., have not shown that the value of

the one spatial eigenvalue is D fo'.

The spatial eigenvalue behavior given by Eq (30) is

illustrated by the distribution of Figure 4.

For the case of a one-dimensional, coherent object field,

the near-field, free-space, spatial eigenvalues exhibit the

following rectangular behavior (Ref 18:801):

; i D '/2 i i , iEintegers

0 1 ; i>Dfo'12 (32)
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where

D fo'/2= dld2/2Xz (33)

fo 12

1 T

1 2 3 4 . . . Dfo= d1d2/X z

Figure 4 - Spatial Eigenvalue Distribution for Near-Field,

One-DimensionalIncoherent Object Field

Propagated through Free-Space

The near-field qualification of Eq (32) means that

Dfo'/2 >> 1. For a near-field, one-dimensional, coherent

object field (of width d1 ) propagated a distance z through

free-space, Dfo'/2 is called the number of DOF of the result-

ing one-dimensional image field (of width d 2). If the object

field is in the far-field (D fo'/2 < 1), then there is only

one spatial eigenvalue and one DOF of the image field.

The spatial eigenvalue behavior given by Eq (32) is il-

lustrated by the distribution of Figure 5.

23
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xi

T T r r
I I I

I I I " " I
I I I I

1 2 3 4 . . . Dfo'/2 = dd 2/2Xz i

Figure 5 - Spatial Eigenvalue Distribution for Near-Field,

One-Dimensional, Coherent Object Field

Propagated through Free-Space

Turbulent Atmosphere - A turbulence spatial eigenvalue

distribution is presented for a circularly-apertured, coher-

ent object field and a circularly-apertured image field.

Distributions are not presented for a circularly-apertured

incoherent object field nor for a one-dimensional incoherent

object field, as neither case is found in the literature nor

can they be easily derived.

For the case of a circularly-apertured, coherent object

field, Shapiro has shovm (Ref 13:2616) that the near-field

(Dfo  1), turbulence spatial elgenvalues are random varia-

bles that exhibit with high probability the following rectan-

gular behavior:
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1 -h r f i k 1 , iintegers

0 i > Df (34)

whe re

D f =(1,\Z) 
2Jf fexp[2 X( 2 71)Jdl2 dl 1  (35)
R1fR2

For a near-field, circularly-apertured, coherent object

field (of diameter dl) propagated a distance z through the

turbulent atmosphere, Df is called the number of DOF of the

resulting circularly-apertured image field (of diameter d 2).

In Eq (35), X(F 2, i) represents the random log-amplitude

fluctuations of the turbulent atmosphere. Since X( 2,r1 )

is a random variable, both Df and the number of DOF are ran-

dom variables. If the object field is in the far-field

(Dfo << 1), then there is only one spatial eigenvalue and its

value is Df. Equation (35) is derived by combining Eqs (5C)

and (32), as is shown in Appendix E. When X(r 2, I1 ) = 0

as in free-space, Eq (35) reduces to Eq (29). The spatial

eigenvalue behavior given by Eq (34) is the same as the be-

havior illustrated in Figure 3, but with Dfo replaced by Df.

Energy conservation requires that the mean of X( 2,I1 )

equal the negative of the variance of X(! 2,i1p) (Ref 4:1374).

In Appendix F it is shown that this requirement means that

<D > = D fo Since the number of DOF of an image field

is a measure of the resolution capability of a spatial domain
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imaging system, the statement < Df > Dfo says that on

the averagye the imaginr system has the same resolution capa-

bility for the turbulent atmosphere as it does for free-space.

Additive Backcround Hoise

This section analyzes the effect additive background

noise has on the useable DOF of an image field when the ob-

ject field is in the near-field, is one-dimensional and is

propagated through free-space. In the analysis, apertures

R1 and R2 of Figure 2 are slit apertures of widths d and

d2 respectively. Both coherent and incoherent object fields

are considered. The analysis is not extended, however, to

circularly-apertured object fields nor to object fields prop-

agated through the turbulent atmosphere.

The analysis follows the example of Bendinelli, et. al.,

(Ref 1:1499), and begins by calculating the average IMSE of

the image field generated when background noise is present

in the image field plane P2 of Figure 2. The background noise

is zero-mean, spatially white noise. The average IMSE of the

image field is

< ISE(N)> = f< [Eo( ) - E0'(i2 )]2>dF2  (36)
R 2

where

00

Eo( 2) = Zbi IF i 2 ) (21)
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and a.here

N

Eo'( 2) = Z(bi + nil i(2) (37)

i=l

Eo( 2 ) is the image.field generated in the absence of

0 2

background noise while E0 '(r2 ) is an estimate of the image

field generated when background noise is present. The number

D in Eq (37) is chosen such that the average I'LISE of the im-

age field is minimized. This is the reason N appears as an

argument in Eq (36). The ni in Eq (37) are the random noise

coefficients of the zero-mean, spatially white noise. The

average of Eq (36) is with respect to these random noise

coefficients. In Appendix G it is shown that Eq (36) is

equivalent to

C0 N

< IT-SE (N) > a i1i 2 
-~ Ia. 12 _ 2v) (38)

i=1 i=1

where the a. are object field weighting coefficients and 2

is the variance of the background noise.

The next step in the analysis is to minimize the average

INISE given by Eq (38). In general, the object field weight-

ing coefficients are unordered. Therefore, in general all

that can be said is that the second summation of Eq (38) must

be positive for the average IISE to be minimized. However,

if the object field weighting coefficients are ordered such

that ai ai+, , then the average TISE is minimized by

choosing an N that maximizes the second summation of Eq (38).
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The second summation cannot be maximized by simply letting 'T

go to infinity because of the ordering of the spatial eigen-

values (X i and the ordering of the object field

weighting coefficients (ai _-ai) . As N becomes too

large, ilai1 2 becomes less than V- 2 and the second summa-

tion begins to decrease rather than increase. Therefore,

the N that maximizes the second summation of Eq (38) is the

N that causes the term in the summation to equal zero or it

is the largest TI that insures the term remains a positive

quantity. The latter qualification is necessary because

the spatial eigenvalues and object field weighting coeffi-

cients assume discrete values that will not always permit an

N to be chosen such that the term in the second summation of

Eq (38) is exactly zero. Therefore, the N that minimizes the

average I,"ISE given by Eq (38) is the largest N that satisfies

the equation

I 2 XiIVj/I-2 12 (39)

Note that Eq (39) is equivalent to Ibi=N2 V where

the term Ib N12 is the power of Nth spatial mode of the

image field and 2 is the power (variance) of the additive

background noise. Since the N that satisfies Eq (39) tells

how many image field spatial modes have powers greater than

the noise power (i.e. these modes are discernible from the

noise), N is the number of useable DOF of the image field.
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Therefore, Eq (39) relates the useable DOF of an image field

in additive background noise to the spatial eigenvalues of

the propagation channel. Eq (39) is valid for both coherent

and incoherent object fields.

For a near-field, one-dimensional, coherent object field

propagated through free-space, the spatial eigenvalue be-

havior is given by Eq (32) and is illustrated in Figure 5.

The number of DOF of the image field when there is no additive

background noise is Dfo'/2, which is defined by Eq (33). Be-

cause of the rectangular behavior of the spatial eigenvalues,

D fo'/2 is also the N that satisfies Eq (39). Therefore, addi-

tive background noise has no effect on the number of DOF of

the image field when the object field is coherent.

For a near-field, one-dimensional, incoherent object field

propagated through free-space, the spatial eigenvalue behavior

is given by Eq (30) and is illustrated in Figure 4. The num-

ber of DOF of the image field when there is no additive back-

ground noise is D fo', which is defined by Eq (31). Because

of the triangular behavior of the spatial eigenvalues, Dfo'

is not the N that satisfies Eq (39). The N that satisfies

Eq (39) for this case is

Ni- Y/a, NJ 0 Vk/lai N 1 1 (40)

Equation (40) is obtained by letting i = N in Eq (30)

and substituting the result into Eq (39). Since Iai=N 2 is
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the power of the Nth spatial mode of the object field and

V.2 is the power (variance) of the additive background noise,

the term v- 2/Jai=NI 2 in Eq (40) is an inverse power signal -

to - noise ratio (SNR). When there is no additive background

noise ( = 0) , the inverse SNR in Eq (40) is zero and

N = Dfo' as expected. However, as the additive background

noise increases, the number of useable DOF of the image field

decreases until N = 0 for = jai=N  . Therefore,

additive background noise decreases the resolution capability

of an imaging system when the object field to be imaged is

incoherent.

Relationship Between Spatial Domain andFrequency Domain

In this section it is shown that when certain conditions

are satisfied, it is asymptotically true that the spatial

eigenvalues of a spatial domain imaging system are obtained

by sampling the power density spectrum (frequency domain) of

the impulse response of the imaging system. There are four

conditions that must be satisfied for the above relationship

between the two domains to be true. First, the spatial imag-

ing kernel of the imaging system must be space-invariant so

that it can be Fourier transformed to obtain the power density

spectrum of the system's impulse response. Second, the ob-

ject field propagated through the system must have a large

spatial extent. Third, the maximum phase change across the

object field must be less than some small radian measure such

30



as W/8. Finally, the object field must be in the near-field.

Near-field means the number of DOF of the image field asso-

ciated with the object field must be much greater than one.

The relationship between the spatial domain and the

frequency domain is shown below for a near-field, one-

dimensional object field propagated through free-space. Both

coherent and .incoherent object fields are considered. For a

one-dimensional object field, object field aperture R1 of

Figure 2 is a slit aperture of width d For the associated

one-dimensional image field, image field aperture R2 of

Figure 2 is slit aperture of width d2. The propagation chan-

nel of Figure 2 is free-space.

For a one-dimensional, coherent object field it is shown

in Appendix H that the space-invariant, coherent imaging

kernel is of the form

K( IrI-ri') = sin( Td2 l';- F l  X z) -l

; I f R1 (41)

The coherent power density spectrum Sc(?1I) of the im-

pulse response associated with the coherent imaging kernel

is the Fourier transform of Eq (41):

S0(II) = rect( I? z/d2) (42)'
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The power density spectrum given by Eq (42) is illustrated

in Figure 6.

1

-d 2 /2,Xz d2/2Xz I

Figure 6 - Coherent Power Density Spectrum

The spatial eigenvalues associated with the coherent ob-

ject field are obtained by sampling Sc(1?I). If temporal

eigenvalues were wanted, the sampling frequency would be the

reciprocal of the time period over which the object field was

observed (Ref 19:206). Since spatial eigenvalues are actually

wanted, the sampling frequency is the reciprocal of the width

of the one-dimensional object field. Since the width of the

object field is d1 the spatial sampling frequency is

1 i11= l/d, . Therefore, for large d1 it is asymptotically

true that the spatial eigenvalues associated with a near-field,

one-dimensional, coherent object field are given by
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Xi S(iii = Sc(i/dl) i 1l, 1iintegers

(43)

Applying Eq (43) yields the spatial eigenvalue distribu-

tion illustrated in Figure 7.

Sl/d 1

1 r TT I
II I I
I I I... i
I I i I
I I I I

1 2 3 4 . . . d 1d2 /2Xz

Figure 7 - Spatial Eigenvalue Distribution from

Sampled Coherent Power Density Spectrum

The spatial eigenvalue behavior illustrated in Figure 7

is in agreement with the behavior given by Eqs (32) and (33).

As the width of the one-dimensional object field increases,

the spatial sampling frequency decreases and the discrete

distribution of Figure 7 approaches a continuous distribution.

The above procedure is now repeated for a one-dimensional,

incoherent object field. For this type of field, Bendinelli,

et. al., have shown (Ref 1:1500) that the space-invariant,

incoherent imaging kernel is of the form
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K(NI-,11) = sin 2 I2 -11 /x)/( 21 P 1-P ,\z)2

; 1 ' R1  (44)

The incoherent power density spectrum SI(lI) of the

impulse response associated with the incoherent imaging

kernel is the Fourier transform of Eq (44):

Sz(l~l) = .A.II IXz/d2) (45)

The power density spectrum given by Eq (45) is ill.ustrated

in Figure 8.

1

-d2/X z d 2 /X z I

Figure 8 - Incoherent Power Density Spectrum

Again, the spatial sampling frequency is 1 l/d .

Therefore, for large d1 it is asymptotically true that the
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spatial eigenvalues associated with a near-field, one-

dimensional, incoherent object field are given by

= S(iI?11) = Sl(i/d1 ) i A 1 , ieintegers (46)

Applying Eq (46) yields the spatial eigenvalue distribu-

tion illustrated in Figure 9.

1/d1

1 I 1.. .

1 2 3 4. d1d2/xz

Figure 9 - Spatial Eigenvalue Distribution from Sampled

Incoherent Power Density Spectrum

The spatial eigenvalue behavior illustrated in Figure 9

is in agreement with the behavior given by Eqs (30) and (31).

As the width of the one-dimensional object field increases,

the spatial sampling frequency decreases and the discrete

distribution of Figure 9 approaches a continuous distribu-

tion.
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The next chapter describes the operation of two adaptive

imaging receivers and compares the resolution capabilities of

the receivers in the spatial domain and the frequency domain.
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IV Adaptive Imaging Receivers

This chapter has five purposes. The first purpose is to

describe the operation of two ideal, adaptive imaging receiv-

ers. The two receivers are the Channel-Matched Filter (CMF)

Receiver and the Multiplicative-Phase (DP) Receiver. The

second purpose is to derive a turbulent coherent transfer

function (CTF) for each receiver. The third purpose is to

derive a minimum average integrated mean square error (IMISE)

expression for the image field generated by each receiver.

The error is the difference between the image field generated

for free-space propagation versus the image field generated

for propagation through the turbulent atmosphere. The fourth

purpose is to use the derived turbulent CTFs and minimum aver-

age IMSE expressions to compare the frequency domain and spa-

tial domain resolution capabilities of the CMF and MP Receiv-

ers. The final purpose of this chapter is to show the condi-

tion that must be satisfied for the results of this chapter

to be applicable to object fields composed of many isoplanatic

patches (extended object fields).

The first section of this chapter presents the imaging

system geometry and field definitions used throughout the

chapter. The second section describes the operation of the

CMF and MP Receivers. The third section derives a turbulent

CTF and minimum average IMSE expression for the CMF Receiver

while the fourth section does the same for the MP Receiver.

The fifth section compares the two receivers and the final
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section is a discussion of extended object field imaging.

General

Figure 10 shows an adaptive imaging system composed of

an object field plane P1 , receiving plane P2 and an image

field plane P3. P1 has a circular aperture R1 of diameter

d 1  P2 has a circular aperture R2 of diameter d2 , and P3 has

a circular aperture R3 of diameter d1 (same diameter as R1 ).

The region between P1 and P2 is called the propagation chan-

nel. The region between P 2 and P3 is called the adaptive

imaging receiver. The receiving plane P2 is therefore both

the input to the receiver and the output of the propagation

channel. For mathematical convenience the length of the

adaptive imaging receiver is the same length as the propaga-

tion channel. In a real imaging system lenses are used to

considerably shorten the length of the adaptive imaging re-

ceiver.

The general impulse response of the propagation channel

of Figure 10 is h 2 1 (i2 ,r1 ). When the propagation channel is

free-space, the general impulse response is replaced by the

free-space impulse response hFS(i 2,rp). The free-space im-

pulse response is defined as

hFS 2 ,rl) ex p[ k(z + (47)
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Equation (47) is based on the paraxial and Fresnel ap-

proximations (Ref 7:58). The paraxial approximation is valid

since the distance z between P1 and P2 of Figure 10 is much

greater than the radii of R 1 and R2. The Fresnel approxima-

tion is valid since the distance z between P1 and P2 satisfies

the following condition:

z3  >[k (x2-xl)
2 + (y2-Yl)2]21 ,1AX/8 (48)

where (xiY I ) is a point in R1 and (x2 ,Y2 ) is a point in R2.

RECEIVING PLANE P 2

PROPAGATION ADAPTIVE
r CHANTEL r2  IMAGING 3

RECEIVER

R

A z , Az

OBJECT FIELD PLAITE P

IMAGE FIELD PLANE P3

Figure 10 - Geometry for Adaptive Imaging

When the propagation channel of Figure 10 is the turbu-
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lent atmosphere, the general impulse response is replaced by

the turbulent impulse response hTB(7 2 ,lI). The turbulent

impulse response is defined as

h TB (ir2,r F { exP[jk(z + Jr21 2 i/2z)]/.jXz}

x exp [X(F 23 F 1 ) + jo(T?2 9 r1 )] (49)

where X( 2,1 I ) and 0(ir2 , 1 ) are turbulence-induced log-

amplitude and phase fluctuations respectively. They are

Gaussian random variables (Ref 17:209) with statistics as

given in Appendix I.

EI(! 1 ) is defined as an unknown but nonrandom object

field in R1 of Figure 10. E0 (F2 ) is defined as the output

field of the propagation channel of Figure 10. By the

Huygens-Fresnel Principle (Ref 2:Chap 6), E ( 2) is

Eo 0 2 ) = fEI(F1 )h2 1 (_2,Fl)dF1  (23)
R1

EN(r2 ) is defined as a zero-mean, spatially white noise

field in R2 of Figure 10. The autocorrelation function of

EN( 2 ) is

< EN(r 2 )EN ( 2 ')> = N0 d 2-F2') (50)

Since EN(F 2) represents additive background noise, the
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field E(I2) at the input to the adaptive imaging receiver is

E( 2 = E0 (r2) + EN(F2 ) (51)

The field E(r2 ) is used in the next section to describe

the operation of the CMF and MP Receivers.

Operation of Channel-Matched Filter and Multiplicative-Phase

Receivers

The CMF and MP Receivers are ideal, adaptive imaging

receivers. They are called ideal because the general impulse

response h2 1 (r 2,'1 ) of a propagation channel is known by the

receivers. A real receiver does not have complete knowledge

of this impulse response. They are called adaptive because

they are able to vary their response to a propagated object

field such that they partially compensate for the effects of

the propagation channel. The effects of interest in this

thesis are turbulence-induced log-amplitude and phase fluctu-

ations.

The CMF Receiver operation is simply the propagation of

the field E(I2 ) from P2 to P3 of Figure 10 using a receiver

impulse response that is the conjugate of the impulse response

of the propagation channel. The resultirg image field
A
ECMF( 3 ) generated by the CMF Receiver is (Ref 14:2611)

A 
(2E= E(r2 )h2 1 ( 2 , 3 d 2  (52)

R2
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The MP Receiver operation is the multiplication of the

field E(r2 ) by an optimum phase and then the propagation of

the field from P2 to P3 of Figure 10 using the free-space

impulse response. An optimum multiplicative phase is a phase

that minimizes the average IMSE of the image field generated

by the DIP Receiver. The image field ED(P 3 ) generated by the

MP Receiver is

EMP( = fE(r2 )exp[j Oo(12)]hFS(12,P3)d 2  (53)R 2

where 00 (P2) is an optimum multiplicative phase defined in

R2 of Figure 10.

The next section uses Eq (52) as the basis for deriving

the turbulent CTF of the CMF Receiver and the minimum average

IMSE of the image field generated by the CMF Receiver.

Channel-Matched Filter Receiver

The turbulent CTF of the CMF Receiver is derived first

followed by a derivation of the minimum average IMSE of the

image field generated by the CMF Receiver. All averages are

with respect to the random log-amplitude and phase fluctua-

tions of the turbulent atmosphere.

Turbulent Coherent Transfer Function - When the propaga-

tion channel of Figure 10 is the turbulent atmosphere, the

general impulse response h2 1 (F2 ,1) of Eq (52) is replaced

by the turbulent impulse response hTB (F2 , 3 ) defined by
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Eq (49). For propagation through the turbulent atmosphere,

Shapiro has shown (Ref 14:2612) that Eq (52) is rewritten as

exp(jkli 3 12 /2z)<C MF(r3 )> =

(d 2 /2 Xz)f exp (jkll 1 12 / 2 z ) E i (! 1 )exp [-D( 1-r 3 1/2 ]
R1

where D(I1-_r3 1) is the spherical wave structure function

(Ref 4:1374). This function is defined as

5
2 2 Z( a3 (5D(I'1-P 3 1) = 1.09k N lPr1-P 3 1 )

where k = 27T/X is the wave number, z is the propagation2

distance of the object field, and CN  is the refractive in-

dex structure parameter of the turbulent atmosphere

(Ref 9:1526). Equation (54) is derived in Appendix I.

Shapiro has also shown that the average image field

A
<EcMF (P3 ) > is obtained by convolving the object field

EI( I1 ) with the following CMF Receiver average impulse re-

sponse <hcMF(P)>:

< h c (P)> = d2 exp[-D(IiI)/2]J(7Trlld 2/Xz)/2Xzll

(56)
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Note that Eq (56) does not include the quadratic phase

factors of Eq (54). The factor on the right side of Eq (54)

is not included because the propagation distance z satisfies

the following condition:

z >*> k 1 1121 .LAX/12 (57)

Therefore, the quadratic phase on the right side of

Eq (54) is approximately unity over aperture R1 of Figure 10

(Ref 7:61). The quadratic phase factor on the left side of

Eq (54) is not included because it is an image field phase

that is due to the geometry of the imaging system rather than

to the propagation channel.

The average turbuelnt CTF < HCMF(7)> of the CMF Receiver

is obtained by taking the Fourier transform of Eq (56). The

average turbulent CTF is

co

< 27Tfexp[-D(x~rdl/2VD7/2Ji27x

x J0 (2r7 ,?Ix)dx (58)

where I'1 = I2Xz/ 2  and D f is defined by Eq (29).

Equation (58) is derived in Appendix I.

Shapiro has plotted <HCMF(?)> for propagation through

the worst-case turbulent atmosphere (Ref 14:2612). The

worst-case turbulent atmosphere means that apertures R1 and
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R2 of Figure 10 are the same size and the variance of turbu-

lence log-amplitude fluctuatic- - 0.5. Shapiro's plots

indicate that the average turbulent CTF contains spatial fre-

quencies higher than the free-space, diffraction-limited cut-

off If'!. This increase in spatial frequency content is

probably due to the refractive effect that the turbulent at-

mosphere has on the propagated object field. Refraction

causes changes in the angle-of-arrival of the propagated ob-

ject field at the CMF Receiver, which results in a spreading

of the generated image field. This spreading shows up as an

increase in the spatial frequency content of the average tur-

bulent CTF. Because of this effect, the spatial frequency

cutoff of the CTF is not a valid measure of the resolution

capability of the CMF Receiver. In the following subsection

it is shown that the average IMSE of the image field gen-

erated by the CMF Receiver is a valid resolution measure.

Integrated Mean Square Error of Image Field - The aver-

A
age IMSE of the image field ECM(F 3 ) generated by the CMF

Receiver is:

<IMSE> = < [E(1 3 ) - ECMF(r 3 )]>d 3  (59)
R3

where E(F 3 ) is the image field for free-space propagation.

E(F 3 ) is obtained from Eqs (23), (51) and (52) by replacing

the general impulse responses with free-space impulse re-

sponses. When propagation is through the turbulent atmosDhere
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and the additive background noise is zero-mean, spatially

white noise, it is shown in Appendix J that the average IMSE

is

ff1f .
<IMSE> ff f I E(5)E I (Fn) h FS ( , ) h FS ,)

R R R1R1

" h FS*( 7, 3 )h FS (7, 3)< f l-exp [X(iimr)]

x exp [X(nT 3 )]exp[-j  (Fi,M) + j "'11Y)

+ exp [X(',7.) + X(:,iT 3)]exp[j 0c (,5)]

x exp[-j 0(v11, 3 )] + exp[X(r¢,i) + X( ii)]

x exp [X("I, 3 ) + X(:, 3)exp[j-0(V,

x exp [-j 0v 3))exp -0 (Fi,) + (_,i j

xd dmd n d d 3  + NoDfo

U, ;rR 1  v, R 2  (60)

where Dfo is defined by Eq (29). The integral term in Eq (60)

is zero when the object field is isoplanatic. The object

field is isoplanatic when its maximum spatial extent is less

than the atmospheric coherence length r0 defined in Chapter II.
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Isoplanatism permits the turbulence-induced log-amplitude and

phase fluctuations of Eq (60) to be written as a function of

only aperture R2 of Figure 10 (Ref 15:463). For isoplanatic

conditions, it is shown in Appendix J that Eq (60) reduces to

< IMSE> = NoDfo (61)

It is further shown in Appendix J that Eq (61) is valid

for free-space propagation even though it is derived from

Eq (60) which is based on propagation through the turbulent

atmosphere. Therefore, when the object field is isoplanatic

and the additive background noise is zero-mean, spatially

white noise, the average IMSE of the image field of the C1F

Receiver is the same for the turbulent atmosphere as it is

for free-space.

Using a different approach than that used in Appendix J,

Shapiro has shown (Ref 14:2611) that the IMSE of the image

field, conditioned on knowledge of mode-amplitude estimator

statistics, is

IMSE = NoD f  (62)

where Df is defined by Eq (35). Since <Df> = Dfo

(Ref 13:Appendix), Shapiro's unconditional IMSE expression

is the same as Eq (61).

Shapiro has also shown that Eq (61) is not only the
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minimum average IMSE expression for the CMF Receiver but that

it is also the smallest average IMSE achievable by any ideal,

adaptive imaging receiver operating in zero-mean, spatially

white background noise. The minimum average IMSE expression

of Eq (61) is therefore a standard for comparing the minimum

average IMSE expressions of other ideal, adaptive imaging

receivers.

The next section derives the minimum average IMSE of the

image field generated by the MP Receiver and the turbulent

CTF of the MP Receiver.

Multiplicative-Phase Receiver

The minimum average IM4SE of the image field generated

by the MP Receiver is derived first followed by a derivation

of the turbulent CTF., All averages are with respect to the

random log-amplitude and phase fluctuations of the turbulent

atmosphere.

Integrated Mean Square Error of the Image Field - The

average IMSE of the image field MP(i3) generated by the MP

Receiver is

<IMSE> = f< (3) - E MP(F 2 >d 3  (63)
R2

where E(r 3 ) is the image field for free-space propagation.

E(r 3 ) is obtained from Eqs (23), (51) and (53). In Eq (23)

the general impulse response is replaced by the free-space
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impulse response and in Eq (53) Oo( 2) is set equal to zero.

When propagation is through the turbulent atmosphere

and the additive background noise is zero-mean, spatially

white noise, it is shown in Appendix K that the average IMSE

of the image field is minimized if the optimum multiplicative

phase Oo(F2) of Eq (53) is chosen such that the following

sufficient condition is satisfied:

Im4 { H fff I ()E I *(7) h FS (, 7)h FS * (ni,mF)h FS( , 3)

" h FS ~ 3 )<exp [X(Fiin)] exp [-j 0(iE - 0.F)

x - exp[X(-,5)]exp[i0(;,ii) +

"du d rn dd 3 } = 0 ; u, C mR 1  F, Q. R2  (64)

In Appendix L it is shown that, when the sufficient

condition above is satisfied, the minimum average IMSE of

the image field generated by the MP Receiver is

<IMSE> = ffff fE (5)EI*(i)h FS( h FS
R3R 2R 2R IR1

"xhFS* (9 3 )h FS (Ii.1 3) [1 - 2A<exp[X~i)

x exp[JO(vu) + J o()]>+ <exp [X( ,1)]
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x e[X(E, Fn) ]exp[j Z) + j - i

"expr[-jd ii)1>I dui drn dv dR di:r + N 0D

; , Fn4E R 1  , nR R2  (65)

Turbulent Coherent Transfer Function - Before the turbu-

lent CTF of the MP Receiver can be derived, a choice must be

made for Oo(12) in Eq (53). The choice should satisfy the

sufficient condition of Eq (64) and therefore minimize the

average IMSE of the image field generated by the MP Receiver.

The problem is that there is no 0o('2) that meets this re-

quirement without restrictions first being placed on the

propagation conditions or type of object field propagated.

However, since many real adaptive receivers cancel turbulence-

induced phase fluctuations, a compromise choice is

Oo(r2 ) = -0(r 2 ) . For this choice of Oo('2) and propaga-

tion through the turbulent atmosphere, it is shown in Appen-

dix M that Eq (53) is rewritten as

exp(jk i 3I/2z)<^EMP (i 3 )> = (d 2 /2X z)exp(-V -/2)

R 
1
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where D0 (O I ) is the phase structure function defined by

Eq (181) and V2 is the variance of turbulence-induced-

log-amplitude fluctuations.

Since the phase structure function of Eq (66) is not

space-invariant, it is not possible to obtain a space-

invariant impulse response and then Fourier transform the

response to obtain the turbulent CTF of the MP Receiver.

However, if the object field is isoplanatic, then the phase

structure function in Eq (66) is zero. In this case, the
A

average image field < E MP ( 3 )> is obtained by convolving

the object field EI(7 1 ) with the following M4P Receiver aver-

age impulse response < hDP(r) >:

(! ) > = exp(- V-2 /2)d2J (TI Id 2 /Xz)/2XZI (67)

Note that Eq (67) does not include the quadratic phase

factors of Eq (66). They are not included for the reasons

given in the previous section. The average turbulent

CTF <HMP(7) > of the MP Receiver is obtained by taking the

Fourier transform of Eq (67). The average turbulent CTF is

<HDIP(f) >= exp(- Vj/2)2 TfJl(2 Wx) Jo(2W?'J x)dx (68)

0

where I 1 112Xz/d 2  •

The following section uses the turbulent CTFs and
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minimum average IMSE expressions derived in this section and

the previous section to compare the resolution capabilities

of the CMF and MP Receivers.

Comparison of Channel-Matched Filter and Multiplicative-Phase

Receivers

The resolution capabilities of the CMF and NP Receivers

are first compared in the frequency domain using their turbu-

lent CTFs. This is followed by a comparison in the spatial

domain using the minimum average IMSE expressions.

Since the turbulent CTF of the MP Receiver is based on

the assumption that the object field is isoplanatic, this

same assumption must be applied to the turbulent CTF of the

CMF Receiver before a valid comparison of the two receivers

can be made. If the object field is isoplanatic, then the

spherical wave structure function in Eq (58) is zero and the

average turbulent CTF of the CMF Receiver is

<HcMF(?)> = 2TfPJ1 (2 Tx)Jo(2 Tr?'Ix)dx (69)

0

where I?'1 = .?12Xz/d2

Comparing Eqs (68) and (69), it is seen that except for

a constant amplitude attenuation the turbulent CTF of the MP

Receiver is identical to that of the CMF Receiver. Since

the attenuation in Eq (68) is independent of spatial frequen-

cy the two turbulent CTFs have the same spatial frequency
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cutoff. Since this cutoff is not a valid measure of the reso-

lution capability of the CMF Receiver it is also not a valid

resolution measure for the 1P Receiver. Except for the con-

stant amplitude attenuation in Eq (68), the turbulent CTFs

are similar in another way. They both approach

circ(I?12Xz/d2 ) as d2-sWOO, where d2 is the diameter of the

input aperture of either the CMF or the MP Receiver. Recall

that circ(l12Xz/d2 ) is the diffraction-limited CTF of a

free-space imaging system with a circular aperture of diame-

ter d2. Therefore, a CMF Receiver with a large input aper-

ture achieves free-space, diffraction-limited resolution of

isoplanatic object fields propagated through the turbulent

atmosphere as does a large-aperture HP Receiver that only

cancels turbulence-induced phase fluctuations.

For the joint conditions of propagation of an isoplana-

tic object field through the turbulent atmosphere and zero-

mean, spatially white background noise, the minimum average

IMSE expression of the CMF Receiver is given by Eq (61).

For the same conditions, the comparable expression for the

UP Receiver is obtained from Eq (65) by letting the turbu-

lence-induced log-amplitude and phase fluctuations be a func-

tion of only aperture R2 of Figure 10. This modification

of Eq (65) accounts for an isoplanatic object field.

Comparing Eqs (61) and (65), it is seen that the minimum

average IMSE of the image field generated by the 1P Receiver

differs from the minimum average IMSE of the image field
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generated by the CIF Receiver. The amount of difference is

the value of the integral term in Eq (65). Since the mini-

mum average I1,1SE of the image field generated by the CMF

Receiver is the smallest average IMSE achievable by any ide-

al, adaptive imaging receiver operating in zero-mean, spa-

tially white background noise, the integral term in Eq (65)

must be non-negative. Therefore, the minimum average ISE

of the image field generated by the DP Receiver is equal to

or greater than that of the C1F Receiver. The CrIF Receiver

can generate an image field having Dfo degrees of freedom

without the average IMSE of the image field exceeding the

minimum average ISE of Eq (61). The same is true for the

MP Receiver only when the integral term in Eq (65) is zero.

There are at least two cases where a value can be chosen

for Oo(r2 ) that not only satisfies the sufficient condition

given by Eq (64) but also eliminates the integral term in

Eq (65). In these two cases the MP Receiver generates an

image field having the same minimum average I4SE as an image

field generated by the CMF Receiver. The first case is

free-space propagation and the proper choice for Oo(F2) is

(2)= 0 The second case is that of an isoplanatic

object field propagated through a turbulent atmosphere that

only induces phase fluctuations in the field. In this case

the proper choice for Oo(12) is Oo(12) = - 0(r2) ; the

cancellation of turbulence-induced phase fluctuations. This

choice is valid for all classes of object fields (coherent,
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incoherent, point source, etc.) as long as the field is iso-

planatic.

There are at least two cases where the choice of

o(2= - ( 2 ) satisfies the sufficient condition given

by Eq (64) but does not eliminate the integral term in Eq (65).

In these cases the average IMSE of the image field generated

by the MP Receiver is a minimum for that receiver but it is

greater than the minimum average IMSE of the image field gen-

erated by the CMF Receiver. The first case is propagation

of a point source field through the turbulent atmosphere while

the second is propagation of an isoplanatic, incoherent object

field with a real and even object intensity distribution func-

tion through the turbulent atmosphere. In both cases the

turbulent atmosphere induces log-amplitude and phase fluctua-

tions in the propagated field. It is shown in Appendix N that

the sufficient condition given by Eq (64) is satisfied in

both cases when Oo(2) = -( 2 ) . It is also shown, in

Appendix N that the minimum average IMSE of the image field

associated with a point source field with a complex ampli-

tude E0 is

<IMSE > = (d /2 Xz)2Eo
*  -2exp(- 2 /2) + exp(- 2

2 2X oV ex(X/2 xP ')

,f [Jlpwd 2 13 1/X Z]l2 (/ 1'3 1)2 di 3  + N 0D fQ
(70)

t2
where is the variance of turbulence-induced log-amplitude
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fluctuations. From Appendix N, the minimum average IIISE of

the image field associated with an isoplanatic, incoherent

object field with a real and even object intensity distribu-

tion function I(F1 ) is

<IMSE> = (d2/2Xz)2[l - 2exp(- /2) + exp(- V2)]

X ffllI;)[JwTd 2 1 3 l 1/,\z)] 2

x (1/ 1 3-r1 1 )2 dr 1 dr3 + NoDf O  (71)

The next section presents the condition that a imaging

system must satisfy for the results of this section to be

applicable to an object field that extends spatially beyond

an isoplanatic patch.

Imaging Extended Object Fields

Much of the preceding work is based on the assumption

that the object fields do not extend spatially beyond a sin-

gle isoplantic patch. Since most object fields of interest

are composed of many isoplanatic patches, this would seem to

restrict the usefulness of the work. This is not a restric-

tion, however, provided the propagation channel of the imag-

ing system is underspread, Sht'piro has shown (Ref 12:472)

that an underspread channel is one that insures that the image

fields associated with spatially disjoint isoplanatic patches
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of an object field are essentially disjoint themselves. Since

the image fields are essentially disjoint, imaging an extended

object field is reduced to an imaging of each isoplanatic

patch and a summation of all the resulting image fields.

The next chapter summarizes the conclusions reached in

this thesis and suggests areas requiring further study,
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V Conclusion

Conclusions

Space-invariance in an imaging system is a prerequisite

for deriving frequency domain transfer functions. In con-

trast, the spatial domain counterpart of transfer functions,

spatial eigenvalue distributions, are derived using the Normal

Mode Approach without requiring an imaging system to be space-

invariant. This is the main advantage of a spatial domain

imaging description.

If a spatial domain imaging system is space-invariant,

then for a spatially-large object field it is asymptotically

true that the system's spatial eigenvalues and hence its spa-

tial eigenvalue distribution are conveniently obtained by

sampling the power density spectrum of the system's impulse

response. Since the power density spectrum is a frequency

domain concept, the two domains are related through the sam-

pling process. Besides space-invariance and a spatially-large

object field, two other conditions must be satisfied for the

sampling to yield a correct spatial eigenvalue distribution.

The object field being propagated through the system must be

in the near field and the maximum phase change across the

field must be small.

The shape of an imaging system's spatial eigenvalue dis-

tribution depends only on whether an object field propagated

through the system is coherent or incoherent. If the object

field is coherent the distribution has a rectangular shape.
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If the object field is incoherent the distribution has a tri-

angular shape. The highest nonzero eigenvalue order of a spa-

tial eigenvalue distribution is a function of an imaging sys-

tem's input and output apertures, the propagation medium of

the system and the wavelength of an object field propagated

through the system. In addition, if the object field is in-

coherent the highest nonzero eigenvalue order is also a func-

tion of any additive background noise in the imaging system.

The highest nonzero eigenvalue order is not effected by ad-

ditive background noise if the object field is coherent.

From the frequency domain, it is concluded that a CTIF

Receiver with a large input'aperture achieves free-space,

diffraction-limited resolution of isoplanatic object fields

propagated through the turbulent atmosphere. The same con-

clusion is made for a MP Receiver operating so as to cancel

turbulence-induced phase fluctuations.

From the spatial domain, it is concluded that for imag-

ing isoplanatic object fields in zero-mean, spatially white

background noise, the CMF Receiver can generate an image field

having the maximum obtainable DOF and also the minimum obtain-

able average IMSE of any ideal adaptive imaging receiver.

There are at least two cases when the preceding statement also

applies to the MP Receiver. These cases are an object field

propagated through free-space and an isoplanatic object field

propagated through a turbulent atmosphere that only induces

phase fluctuations in the field. In the latter case the MP
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Receiver generates an image field having the minimum obtain-

able average IMSE by cancelling the turbulence-induced phase

fluctuations in the propagated object field. For point

source fields and isoplanatic, incoherent object fields with

real and even object intensity distribution functions, phase

cancellation minimizes the average IMSE of the image field

generated by the MP Receiver but not to the minimum obtain-

able average value of the CMF Receiver.

Suggestions for Further Study

The relationship between the spatial domain and frequency

domain was shown for a one-dimensional object field propagated

through free-space. This relationship should be verified for

two-dimensional object fields (square and circular apertures)

and for propagation through the turbulent atmosnhere.

The sufficient condition given by Eq (64), for minimizina

the average IMSE of the field generated by the MP Receiver,

is complicated. If-possible, an attempt should be made to

express the optimum multiplicative phase of the sufficient

condition in terms of the object field.
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Appendix A - Turbulent Coherent "ransfer Function

This appendix derives Eq (13), which is the average

transfer function for the imaging system of Figure 1 when

the propagation channel is the turbulent atmosphere and the

object field is coherent. The derivation begins with Eq (12):

< TCOH(I)> = VOCOH(f)<exp [X(XdiIfI)

+ j 0(\d iI'I )I> (12)

where V-OCOH(l) is the free-space CTF defined by Eq (4), and

X( Xd i ll) and O(Xd i lI) are respectively the log-amplitude

and phase fluctuations of the turbulent atmosphere. Since

X(\dilrl) and 0(XdiIfl ) are independent random variables

(Ref 4:1374), the average on the right side of Eq (12) is

written as two averages (Ref 11:211):

< TCOH(I) > = .VO..COH( ?)<exp[X(X\diI?I)] >

x <exp[j 0(Xdil?[)] > (1A)

Prior to evaluating the averages on the right side of

Eq (IA), the first and second order statistics of X(,dilI)

and O(>dill) are given:

<X(Xdil I) > =.2 - (2A)
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< Cdil i)>= 0 (3A)

< 2 ? => 7 (4A)

Equation (2A) is a consequence of energy-conservation

considerations (Ref 4:1374). It can be shown (Ref 4:1374)

that the first average on the right side of Eq (1A) is equiva-

lent to

<exp [X(X diI?)] > = exp[<X(XdiI)>]

x exp{1< X(Xdilf) - <X(Xdi 1fI)>]2 >/2}

(5A)

Substituting Eq (2A) into Eq (5A) yields

<expEX(XdiI?I)] > = exp(-VX2 /2) (6A)

It can be shown (Ref 4:1374) that the second average on

the right side of Eq (1A) is equivalent to

<exp[J e(xdi[l) ] > = exp[- <J(dill)>]

(7A)

Substituting Eqs (3A) and (4A) into Eq (7A) yields
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<exp [x(,d~i?I)]> = exp(-V 2 /2) (8A)

Substituting Eqs (6A) and (8A) into Eq (IA) yields

0i = _COH(?)exp[_(V 2+ 2 )/2] (9A)

2 2 2
Finally,. letting 2 = + yields Eq (13):

< "rCOH > ='0_CO-()exp(V.2/2) (13)
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Appendix B - Fredholm Equation for Normal Mode Imaging

This appendix derives Eq (25) from Eqs (19), (21) and

(23). Eq (25) is then used to obtain Eq (26), which is a

Fredholm Equation for INormal I-lode Imaging. Equations (19),

(21) and (23) are repeated below:

a*

E1 (r I) = Zai i 1) (19)
i=1
@0

E 2(i) = Tb (1p2) (21)

i=1

E0 (r2 ) = Ei( 1 )h2 1 (r2,r)dlI (23)
R1

Substituting Eqs (19) and (21) into Eq (23) yields

bi Pi(T 2 = f ai Oi(l)h 21( 2,l)dP (iB)
i=l R1il

Changing the order of integration-summation on the right

side of Eq (IB) yields

()= Zaif i()h 21( 2 'pl)d~i (2B)

i=1 i=1 R1

If the Oi(il and Pi(P2 ) are chosen such that Eq (2B)

is satisfied term by term, then the following is true:

biPi(r2 ) = aiI Oi(Pl)h 2 1(P 2,1:)dP 1  (3B)

R1 .
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The ratio of b i to ai is defined as

bi /a =i 
(4B)

Substituting Eq (48) into Eq (23) yields Eq (25):

-i 2 f(2 ) = 
f i h21T2' )dTl (25)
R1

Since the ' i(?2) in Eq (25) are a CON set of spatial

eigenfunctions, the following is true:

f Pjr 2)T (r 2) d 2 J(5B)
R2

Expressing Eq (25) in terms of Ti(12 ) and the conjugate

of Eq (25) in terms of (r 2), and then substituting the

resulting expressions into Eq (58) yields

R2R1

x f U: 1 )h 21*(r 2,rI )dPl dl 2 4C Re

(6B)

Changing the order of integration in Eq (6B) yields

=jiX R 21 112 11
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One way Eq (73) is satisfied is for

i Oi( ') = f h2 (2 ,(r 1 )h21* (r2r' )dr 2 Oi(Fl)dF
1I2

1,E' RI  (BB)

where the imaging kernel K(rl',r) is defined as

K(TI',1F) = fh21(r2r)h21 (2'rI)d2 ; 1 1

2 (27)

Substituting Eq (27) into Eq (8B) yields Eq (26):

R1
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Appendix C - Degrees of Freedom Expression for a

Near-FilAd, Circularly-Apertured, Coherent

Object Field Propagated through Free-Space

This appendix derives Eq (29), which is the DOF expression

for a near-field, circularly-apertured, coherent object field

propagated through free-space. The derivation begins with

Eq (25):

l fK(!l I Oi (-rl) d7 1  1 4ER, (25)i ~ R 1

Multiplying both sides of Eq (25) by (r 1) and inte-

grating over R1 yields

R1

x dr1 d I ' ; C 1  R1 (1C )

Using the orthogo.iality of the i-(?1) to simplify the

left side of Eq (IC) yields

X4 = ffK( )i(?) i* I')dld' ; ?I CR 1

(2C)

Summing both sides of Eq (2C) over all values of i yields

- ff-K( 1 0*1

16 R (3c)
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Applying Mercer's Theorem to the right side of Eq (3C)

yields

Xi = f K(FI'IFI) (i '-1 )d i dF 1 ' F I IRI

1 1 (4C)

Using the sifting property of the delta function, Eq (4C)

is simplified to

Z Xi = JK(7j,Fj)d~j (50)
i=1 RI1

For free-space propagation, the imaging kernel K(rIr)

in Eq (5C) is defined as

K= fhFS(72,11)hFS ( 2 ,r)dF 2  (6C)
R2

where

h FS (i2,) = exp[Ijk(z + IF2 -F1 2 2z)]IjXz (47)

Substituting Eq (47) into Eq (6C) yields

K(F ,71) = (1/Xz)2fd7 2 = Tr(d2/2Xz)2  (7C)
R2

where R2 is a circular aperture of diameter d2. Substituting

Eq (7C) into Eq (50) yields
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2 f=di: 2
Xi = M'(d 2/2Xz)2f = (Td 1 d 2 /4Xz) (BC)

i=l R 1

where R1 is a circular aperture of diameter dI . For a near-

field, circularly-apertured, coherent object field propagated

through free-space the spatial eigenvalue behavior is given

by Eq (28):

'1  ; i Dfo if1 , iCintegers

10 ; i>Dfo (28)

From Eq (28), the summation of X i over all values of i

yields

00

YX = Dro (9c)

=1

Equating Eqs (8C) and (9C) yields Eq (29):

D = (Tdld 2/4Xz)2  (29)
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Appendix D - Sampling Theorem Derivation

of a Degrees of Freedom Expression

This appendix derives Eq (29) using the Sampling Theorem.

Equation (29) is the DOF expression for a near-field, circu-

larly-apertured, coherent object field propagated through

free-space. The Sampling Theorem says (Ref 6:93) that the

number of DOF of an image field is obtained by dividing the

solid angle subtended by an object field aperture R1 (when

viewed from the image field aperture R 2 ) by the diffraction

limited field of view of the image field R2 . In this appen-

dix apertures R1 and R2 are circular apertures of diameters

d and d2 respectively. The apertures, solid angle Q S and

field of view QDL mentioned above are illustrated in Figure 11.

P of Figure 11 is an object field plane while P2 is an image

field plane. The planes are separated by free-space.

The solid angle 0 S subtended by the object field aper-

ture R1 of Figure 11 is

= ARi/z2  (1D)

where

AR, = 7td1
2 /4 (2D)

The diffraction limited field of view 5DL of the image.

field aperture R2 of Figure 11 is (Ref 6:93)
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QDL = X2 AR2 (3D)

where

AR2 =r f 2 
2 /4(4D)

IMGE FIELD PLANIE P 2

OBJECT FIELD PLANJE p1

Figure 11 - Sampling Theorem Geometry

Dividing Eq (1D) by Eq (3D) yields Eq (29):

D o (ARt1/ 2)/( X2/AR2 ) = 7d 1 d2 /4>z) 2(29)

where Df is the number of DOF of the image field associated

with the object field described at the beginning of this

( appendix.
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Appendix E - Degrees of Freedom Expression for a

Near-Field. Circularly-Apertured, Coherent Object

Field Propagated through The Turbulent Atmosphere

This appendix derives Eq (35), which Is the DOF expres-

sion for a near-field, circularly-apertured, coherent object

field propagated through the turbulent atmosphere. The deri-

vation begins' with Eq (5C) from Appendix C:

EXi = fK(1,i 1 )d! 1  (5C)
i=1 R 1

For propagation through the turbulent atmosphere, the

imaging kernel K(r 1 ,P1 ) in Eq (5C) is defined as

K(P1I,1) =fhTB(r2,rl)hTB ( 2,rl)dp2

R 2

where

hTB(r 2 ,r) = {exp[ijk(z + V 2-P12/2z)]/ j Xz}

Substituting Eq (49) into Eq (1E) yields

K( 1 1\:) = (1Xz)2fexp[2X( 2 , P)dF 2  (2E)
R2

Substituting Eq (2E) into Eq (5C) yields
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Z =(1IXz) 2J fexp [2 X( 2 171 )] dF d P (3E)
R 1R 2

For a near-field, circularly-apertured, coherent object

field propagated through the turbulent atmosphere, the spa-

tial eigenvalue behavior is given by Eq (34):

i~ =  f i ZL 1 1 C integers

0 1 > Df (34)

From Eq (34), the summation of Xi over all values of i

yields

0

Z xi = Df(4E)
i=1

Equating Eqs (3E) and (4E) yields Eq (35):

D f =(1/X/z)2 ffexp[2 X 2i)dl dF, (35)
1I2
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Appendix F - The Consequence of Energy Conservation with

Regard to the Degrees of Freedom of an Image Field

This appendix shows that since the mean of X(F 2,11 )

must equal the negative of the variance of X(i 2,:I), the

average of Df must equal Dfo. X(2,2F) represents the log-

amplitude fluctuations of the turbulent atmosphere. Df is

the number of DOF of the image field associated with a near-

field, circularly-apertured, coherent object field propagated

through the turbulent atmosphere while Dfo is the number of

DOF of the image field associated with the same object field

propagated through free-space. < Df > and Dfo are defined

as follows:

Dfo = (1/,\z)2ff di 2 dr1  (2F)
1I2

It can be shown (Ref 3:71) that the average in Eq (iF)

is equivalent to

< exp[2 X(1:2,i1)] > = x12<XF'l)>

x exp{ 2X( 2 1 1) - 2<X(F2 Ilz)>]2>/2 (3F)

Energy conservation requires the following to be true
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(Ref 4:1374):

< X(F2  :1) > V 2 - (4F)

where I~ is the mean of X(r2 r1  and 2is the variance of

X(F 2 ":l)' Substituting Eq (4F) into Eq (3F) yields

<ep2(2F)>= 1 (5F)

Substituting Eq (5F) into Eq (1F) reduces Eq (iF) to

Eq (2F) and yields

<D Df (6F)
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Appendix G - Average IMSE of a Normal Mode

Image Field in Additive Background Noise

This appendix derives Eq (38), which is the average IMSE

of a Normal Mode image field in additive background noise.

The derivation follows the example of Bendinelli, et. al.,

(Ref 1:1499). The average IMSE of the Normal Mode image

field is

<IMSE(N)> = f<[Eo(12 ) - E0 1 'C 2 )] 2 >dl 2  (36)

where

E0 (P2 ) = Zbi'i ( P2) (21)

and where

EO'()= 2 (bi+ni ) 'Pi(; 2 ) (37)

! =1

E0 (F2 ) is the image field generated in aperture R2 of

Figure 2 in the absence of background noise while E '(1 2 ) is

an estimate of the image field generated when background

noise is present. The number N in Eq (37) is chosen such

that the average IMSE of the image field is minimized. This

is the reason N appears as an argument in Eq (36). The ni

in Eq (37) are the random noise coefficients of the zero-mean,

spatially white noise. The average of Eq (36) is with respect

to these random noise coefficients. The 1 ( 2) in Eqs (21)
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and (37) are a CON set of spatial eigenfunctions defined in

image field aperture R2 of Figure 2. The bi in Eqs (21) and

(23) are image field weighting coefficients that are related

to object field weighting coefficients by

bi = ai (iG)

Substituting Eq (iG) into Eqs (21) and (37), and then

substituting Eqs (21) and (37) into Eq (36) yields

< IMSE(N) > E ;AiaiI (F 2

N 2

- ZniIi (i 2 ) > di 2  (2G)

Expanding Eq (2G) and reversing the integration-summation

order yields

<IMSE(N)> = .Z "i V XjaiajR2i(P2)'j*(P2 )d2
i=N+l J=N+I 2

+ <ninj> fT(i 2 ) J*(F )dF
i=l J=l R2

2-0 2 J13~ai < n> fii(:)\ a d
i=N+1 J=1 2

(3G)

By the orthogonality of the TIa(2

f (F = J (4G)
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Substitutina Ea (4G) into Eq (3G). and noting that the

last term in Ea (3G) is zero because the summations are over

disjoint intervals, yields

co N

< IMSE(N)> = Z Xijail2 + Z < ni 2 > (5G)

i=N+l i=1

Since the additive background noise is zero-mean, the

average on the right side of Eo (5G) is

<Inu 2 > = 
2  (6G)

where V2 is the variance of the noise. Substituting Eq (6G)

into Ea (5G) yields (after a rearrangement of terms) Ea (38):

-N

<IMSE(N)> = X Xiai 2 - Z(Xijai2-V ) (38)

i=N+l i=i
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Appendix H - Space-Invariant Imaging Kernel for a Near-Field

One-Dimensional Coherent Object Field

Propagated through Free-Space

This appendix derives Eq (41), which is the space-

invariant imaging kernel for a near-field (Dfo'/2 >> 1),

one-dimensional, coherent object field propagated through

free-space. With respect to Figure 2, the general expression

for the imaging kernel K( 1 ',T1 ) is given by Eq (27):

K( 1',i l ) = fh 21(r 2,r)h 2 1 ( 2,r 1 ')d 2  ; 1'E R1 (27)

R2

where R is the object field aperture,R2 is the image field

aperture and h2 1 (r2,r) is the general impulse response of

the propagation channel. For a one-dimensional object field,

R is a slit aperture of width dI. For the associated one-

dimensional image field, R2 is a slit aperture of width d2.

For free-space propagation, the general impulse response

h2 1 (Pr2, 1 I ) is replaced by the free-space impulse response

hFS(i 2 ,r). For a space-invariant imaging kernel, K(PI' ,rI )

is replaced by K(Pir-I'ij). Therefore, for a near-field

(Dfo '/2 >> 1), one-dimensional, coherent object field propa-

gated through free-space, the space-invariant imaging kernel

from Eq (27) is

+d2/2

K(I 1- 1hI) = IhFS( 2 'l)hFS*(9 2 '1r')d; 2  ; ir1'R 1

-d2 /2 (1H)
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where

h S '11)= exp~jk(z + IF 2-Fr1 2 /2z)]/jX z (47)

Substituting Eq (47) into Eq (1H) yields

K(1I21-J'I) = (1/X\ )exp k(1 [Ij- 1'1/2,]

+d2 /2
x exp[I- JkF.(r -Fl')/2z Id72 ; l'R1

-d2/2 (2H)

Evaluating the integral in Eq (2H) and using the iden-

tity sin(w) = [exp(w) - exp(-w)]/2j yields

K(I I1-FI1 I) = (l/Xz)exp jk(I I1 2 
- pVi'1 2 )/2z]

x snCTr 2P -71 '1 /X -> / i I ill'

; FI I_ R I (3H)

If the maximum phase change across the object field is

less than some small radian measure such as 7r/8, then the

quadratic phase term in Eq (3H) may be eliminated. The condi-

tion for elimination is

K-lp:l2 -Irlgl 2 lM,,2z << 7r/8 (41)
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Since the width of the object field aperture is dl, the

quantity ( -_ l, 1i
2 )j1 , in Eq (4H) is equivalent to

(Jp1 2 - = (d/2)2  (5H)

Substituting Eq (5H) into Eq (4H) yields

z > 2d12 (6H)

When Eq (6H) is satisfied, Eq (3H) reduces to Eq (41):

K(I I -Fil'l) = sin(7Td 2 il-;1it/xz)/TrI i-i'j

r C RI  (41)

where the (i/X z) constant in Eq (3H) is dropped because it

is unimportant to the general form of the coherent imaging

kernel.

In addition to Eq (6H), there is another condition that

must be satisfied for Eq (41) to be true. The additional

condition is that the one-dimensional coherent object field

be in the near-field. This means that

Dfo1/2 >> 1 (7H)
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where

Dfo'/2 = d1d2 /2,\z (33)

Substituting Eq (33) into Eq (7H) yields

d2 >> 2X z/d (8H)

Therefore, for Eq (41) to be true, the propagation dis-

tance z must be large enough to satisfy Eq (6H) and the width

of the image field aperture must be large enough to satisfy

Eq (8H).
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Appendix I - Image Field and Average Coherent Transfer

Function of the Channel-Matched Filter Receiver

This appendix derives Eqs (54) and (58). Equation (54)

is the expression for the image field generated by the CMF

Receiver while Eq (58) is the expression for the average CTF

of the CMF Receiver. The derivation of both equations begins

with Eq (52):

ECMF(r3) =fE( 2 )h2 1 *(F, 3 )d 2  (52)
R2

If propagation is through the turbulent atmosphere then

the general impulse response, h21 (P2 ,P3 ), of Eq (52) is re-

placed by the impulse response, hTB(F 2,"3 ). Equation (52)

is then rewritten as

E CMF( 3 ) = E(F 2 )hTB*(r2,r3 )d 2  (ii)
R 2

where

hTB~r2 r3) = exp[jk(z +[ 2/2z)]JXZ}

x exp [X(F2 , i3 ) + jo(F2,FA) (49)

The field E(F2 ) of Eq (52) is the input to the CMF

Receiver. By Eq (51) it is
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E(r 2) = E0 (r2 ) + EN(F2 ) (52)

where E0 (F2 ) is the output field of the propagation channel

and EN(r2 ) is a zero-mean, spatially white noise field repre-

senting additive background noise. For propagation through

the turbulent atmosphere the field E(F 2 ) is expressed as

E 0 2 ) = fEI(Fl)hTB(F2,Pl)d!l (21)
R1

where E(F I) is an unknown but nonrandom object field in

aperture R1 of Figure 10. Substituting Eqs (51) and (21)

into Eq (1I) yields

ECMF G =I EI(i1)hTB(r 2,rl)hTB (z 2 ,F3 ) d11 d72

+ EN(F 2 )hTB (F 2,13)d 2  (31)

Since X(P',F) and (F',F) are random variables, the

turbulent impulse response given by Eq (49) is a random func-

tion. Therefore, the image field given by Eq (31) is also

random. On the average however the field is

<EMF( 3 ) = IEI(I1)<hTB 2,1l)hTB ( 2 3 )>
R2R1

x dF1 di2  (41)
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where the second term in Eq (31) is dropped because the noise

field is zero-mean. Substituting Eq (49) into Eq (41) yields

exp(jklPl 2 12 z Fz<c > = (1/Xz)2fexp(jklll 2/2z)
R1

x E(I 1 )f exp- jk(r1-P 3).P 2/Z] <exp [X(P F2 i 1)]
R2

x exp [X(?2,iP3 )]><exp[j (P2 ,":) - j(P2,P3,>

x dr2 dr1  (51)

where the average of the right side of Eq (51) is written as

two separate averages of X(',!) and (r,r) since these

are independent random variables (Ref 4:1374). Furthermore,

X(',P) and 0a(r',r) are Gaussian random variables

(Ref 4:1374) with the following statistics:

< X(i'iP) > V = 2 (61)

= 0 (71)

<2(j'.P) > 2 (81)

It can be shown (Ref 4:1374) that the first average on

the right side of Eq (51) can be expressed as
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< epIX1 71)+ X(P 2 - 3 )] > =ep1 2P)>

x exp [< X(P 2 1 3 )] ex{f< [X(7 2 ,F 1 )

_< x(P2,P3)>] 2 >/1} (91)

Substituting Eq (61) into Eq (91) yields

<exp [X(r2,r1 ) + X(r 2 ,r3)]> =

exp (-2 X )exp f [<X 2 (1:2, 11)> -  ]2

x exp{ [<X2(1: 2 113 ) > - 2 } (101)

Since x2 = 2 (F )> 2 Eq (10I) is simplified

to

< exp [X( 2,i1 ) + X(P21P3)]>

exp{- [<X 2 (2l)> + <X 2 ( '> - 22]/2)

Equation (11I) is reduced further to
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<exp [X(i 2 1 1 ) + X(F2 -

e{- < [X( 2,F1) - X(i 2 ,i13 )]2>12} (12)

Now, the log-amplitude structure function is defined as

(Ref 4:1374)

Dx(pu,P) = <[X(P'+P' F+) - X(i',)] 2 > (131)

Using Eq (131) in Eq (121) where p' = 0 and

Frr3  gives

<exp [X(F21 1 ) + X(F 2 , 3 )]> = exp[-D,(jii-1 3I)/2I

(141)

The second average on the right side of Eq (51) can be

expressed as

<- j(i 2 ,) 3 )]> =

exp i <01: 2 i)> -J

x exp{-<[0(F
2sri) - < (;1;) 12> 2

x exp{j-<[0(r22 3) - <(12'I;3)>1]2>/21 (151)
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Substituting Eq (71) into Eq (151) gives

ox,-[< 2,2j)> + <(161),3 >]/2 (161)

Since c(t',i) is zero-mean, Eq (161) is simplified to

<ex [C1(2 ,i1 )- 0 (F 2 ,17)]> 

-x (:173]>2 (171)

Now, the phase structure function is defined as

(Ref 4:1374)

Using Eq (181) in Eq (171) where p' = 0 and

p =1-F3 yields

< expJ (iO 2,I1) - J (F2 ,7 3 )]> = exp [-Do( Ih.-; )/2]

(191)

Substituting Eqs (141) and (191) into Eq (51) gives
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ex~j 1~2  E )>=
/2z)<EcF?) =ex k113 12)r- C4F( 3

(1iX z) 2f exp(jkl pll 21/2z)Ei (Pl)exp [-D (I /i )2]

R 1

x fexp[-j2W(Fl-P 3 ).P 2 /XzIdi 2 di 1  (201)
R 2

where D( IrPI -r3  Dx( Ir-r31) + D0(I 1 -P 1) is the

spherical wave structure function and where the wave number

k in the inner integral is replaced by 2 l/N. Note that the

inner integral of Eq (201) is the two-dimensional spatial

Fourier transform of aperture R2 , where (P1 -i3 )/X z = f

is a two-dimensional spatial frequency vector. Since R2 is

a circular aperture of radius d2 /2, the inner integral is

actually a Fourier-Bessel transform of circ(21F 2l/d2 ) where

i 1r21 __/2

circ(21 21/d2) = f 1 ot e w s 
(22I)I0 otherwise (211)

From a table of Fourier-Bessel transforms, the transform

of Eq (211) is

'[c irc(2 1'2 lid 2)] d 2X zi (Wripi-FId 2/,\z)/2 11:1F 3 1
(221)

Replacing the inner integral of Eq (201) with Eq (221)

yields Eq (54):

(L
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2 A

exp(jkI312/2z)<ECMF (3)>

(d /2 x-)foexp(Jk 11 1; 2 /2z)EI(! ,exp[-D( 1 1 1-13 I)/2]
R1

If the quadratic phase factors in Eq (55) are ignored,

A
then the CMF Receiver average image field, <EcMF(.3) >, is

obtained by convolving the object field, EI(i1 ), with the

following CMF Receiver average impulse response <hCMF()> :

<hMF(F)> = d2 exp[-D(l )/2]J(TrWJ ld21Xz)/2Xz F

(56)

The average CTF, < HcMF(?)>, of the CMF Receiver is

obtained by taking the Fourier transform of Eq (56):

+00

<HCMF(?)> = (d2/2Xz)fexp[-D(II)12]J1(Tri;Id 2/Xz)

x expC-j2TrJ II)(l/II)dF (231)

Let x = I1ld2 /2N z and I = t1?2Xz/d 2  so that

Eq (231) becomes

+00

< H CIF(?) > =(d 2/2 Xz) fexp [-D(x2Xz/d 2 )/2 ]1 1(27Tx)
-0

x exp(-J27Tr?' Ix)(l/x)dx (241)
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Expressing the argument of the spherical wave structure

function in terms of Dfo , the free-space DOF for a circularly-

apertured object, yields

<HcMF(f)> = (d2/2*\z)fexp-D(xTrd 1/2- )/2]Ji(21tX)

x exp(-j2Tr j 'x)(1/x)dx (251)

where

Dfo= (Tr1d/4N z)2 (29)

Using a table of Fourier-Bessel transforms (Ref 11:145),

Eq (251) is simplified to Eq (58):

<HcMF(1)> = 2 Trfexp[-D(x7Tdl/2 f.)/2]J,(2Trx)

0

x J0 (2 'x) dx (58)
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Appendix J - Average IlISE of the Image Field of the

Channel-Iatched Filter Receiver

This appendix derives the expression for the average

IMSE of the image field generated by the CTF Receiver, when

propagation is through the turbulent atmosphere and the addi-

tive background noise is zero-mean, spatially white noise.

Another average II4SE expression is derived for the same con-

ditions in conjunction with isoplanatism. For the background

noise described above, it is shown that the average IMSE for

the joint conditions of isoplanatism and propagation through

the turbulent atmosphere is the same as the average IHSE for

free-space propagation. The average IM4SE of the image field

generated by the CMF Receiver is

<IMSE f< [E(r 3 ) - ECMF( 3) 2- (59)
R3

where E(i 3 ) is the field for free-space propagation and is

expressed as

E(+3 ) = Ei dN2
2R1

+ fEN(r2 )hFs (r2 ,r3 )d 2  (iJ)

R2

A

Using Eqs (23), (51) and (52), the image field E CMF( 3 )

generated by the CMF Receiver is expressed as
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E CMF(r 3 ) = ffE(l)h2 1 (i2,l)h 2 1 (P2,F 3)di1 dF2

+ fEN(r2 )h2 1( 2,' 3 )d 2  (2J)
R 2

In Eqs (1J) and (2J), EI(F1 ) is an unknown but non-

random object field in aperture R1 of Figure 10, EN(r2 ) is

a zero-mean, spatially white noise field representing addi-

tive background noise, h2 1 (',7) is the general impulse re-

sponse, and F ) is the free-space impulse response

defined by Eq (47). Substituting Eqs (1J) and (2J) into

Eq (59) and expanding yields

< IMlSE > f f f1 f U ;I hF - 1 S*(,FR 3R 2R 2 RIRI I I

x hFS (vr 3 )hFS(R,P3 )d d dv dn d 3

- 2Re[fffffE(ia)EI*()hFS(7,U5)hFs( , 3 )

X < h2 1 (i, M)h 2 1 (nii)>du drn dv dFi dr31

- 2Re [ff1 EI(U)<EN *(i)>hFs( ,i)

x hFS ( ,r3 )<h 2 1 (n,z3)>dU d; dn dF3]

rr+f EI( ()<h 2 1 (,ui)h 2 1 (,)
( R3 R2R2 RIR1
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xh 2 1 ( 3, 3 )h2 1 (ii,73 )>dU dn d dn d 3

-2Re[ffffE )< EN( >< h2 1

X h2 1  )h2,3 )h2 1(n, 3 )>d5 dmn d: dn d 3 ]

+ f f E N(E N *(n)><h 21 (,3)
R32

" h2 1 (nI,3)>d dn dr 3  ; 5, ieR 1  , RGR2

(J)

The third and fifth terms of Eq (3J) are zero because

the noise field is zero-mean. Since the additive background

noise is spatially white noise

<EN ( )EN(> = N0 I ( -n )  (50)

For propagation through the turbulent atmosphere, the

general impulse response, h2 1(i',i), of Eq (3J) is replaced

by the turbulent impulse response, hTB(r',z). The turbulent

impulse response is written as

h TB(') h FS ' exp [X(I,) + j 0F,.(7 ] (4J)

Substituting Eqs (50) and (4J) into Eq (3J) yields
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<IMSE> f f f fEI Mh FS (;,71h FS CI, F)
R3 R2 R2 RIR 1

" hh FS ,F3)s(, )<11 - expn'

x exp [X ,7]3) exp[- j(, i) , i .)]

" exp + e [j ox (Z" z.)]

" exp[F 3)] + expE[X, ,ri) +]exii E, ]

" exp[X(ii'ir3 ) + X(:,IF3 )]exp [j~~i)

", expC- [_j , exp[-j O(T,ffi) -JO7,7:3]}>

"c d~ din d: dni dF3  + I N 0/c,\z) 2]

x f f< exp[2 X(n)]>d" 2 dr 3R3 R2

ui, ineR T C, ~R 2

(5J)

where the second term of Eq (3J) is expanded using the iden-

tity, Re(w) = (w+w*)/2 , and a change of variables

(j.-mFi and .-.n) is performed on the w term of the expansion.

Equation (5J), specifically the second term, can be simplified

even more. Using Eqs (61) and (91), it can be shown that
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< exp [2X(n)] > 1(6J)

Substituting Eq (6J) into Eq (5J) yields

<IMSE>= fffffEi()EI* (F)hFS(,)hFs ( )
R 3R R2R 1R1

" hFS *(,P 3 )hFS( , 3 )<{1 - exp[X(R,Mn)]

x exp [X(.IF3 )] ex[-j O(iFn) J +]

" exp[X(:'.) + X ,: .)]e xp [j .)]

" exp[-i 0 (:,P] + exp[X;,;i +X(.Fii)]

" exp [X(F'IF3 ) + X( ri 3 )]Jexp [ (0 i

" di drn dZ, dF di + IN 0 /(X z2]I

"xffdr 2 dF 3  Ur e. ER 1  Z,, iR 2  (7J)

Still more simplification is possible. Since R2 is a

circular aperture of radius d2/2 and R is a circular aper-

ture of radius d /2 (same radius as R1 ), Eq (7J) reduces to

98



R JR 2R 2RRF S F S

x hFS( 3)hFS 3 ) < - exp [X(F,7)]

x exp [X(n,r 3 )] exp[-j )(Pin) + j )(,i 3 )]

+ exp [x )+,) + )] exp[ ,

x exp[-,i 3. ] + exp [X(; ,) + X(iii)]

x exp [X(nXi 3 ) + (rF,).)[

x exp [-j ( 3 )]exp[-j(iF+ - )]+>

x du dm dv dn dr 3  + NoDfo

;1, Fi FR 1  F, iER 2  (60)

where

D ~ [ld d/4 Xz]2  (29)

Equation (60) is the average IMSE of the image field

generated by the CMF Receiver when propagation is through

the turbulent atmosphere and the additive background noise

is zero-mean, spatially white noise. If the object field

is also Isoplantic, then the first term of Eq (60) becomes
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zero. For isoplanatic object fields, X( ', ) X(') and

and Eq (60) becomes

<IVISE> = EI(U)EI*(m)h FS0, )hFS
R R R R 1R1

x hFS *(vI 3 )h FS(i, {1- <exp (2 X()]>

- < exp [2 X(,] > + < exp[2X(n) + 2 X()]>1

x du dM d dF dr3  + NoDfo

; 3 , CR I , R 2  (8J)

Using Eqs (61) and (91), it can be shown that

<exp[2 X(R) + 2 X(-)]> = 1 (9J)

When Eqs (6J) and (9J) are substituted into Eq (8J),

the first term becomes zero as alleged and Eq (8J) reduces

to Eq (61):

<IMSE > = NoDfo (61)

Equation (61) is based on the conditions of isoplanatism,

propagation through the turbulent atmosphere, and zero-mean,
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spatially white noise. The same result applies however for

the conditions of free-space propagation and zero-mean, spa-

tially white noise. This is shown by letting X(',!) and

0(1:,P) in Eq (5J) equal zero. The first term of Eq (5J)

becomes zero and Eq (5J) reduces to

<I14SE> = No0/(xz) 2  ffdi 2 dF3  (lOJ)
R3R2

Since R2 is a circular aperture of radius d2 /2 and R3

is a circular aperture of radius d1 /2 (same radius as RI ) ,

Eq (1OJ) is equivalent to

<IMSE > = NoDfo (61)

where

D [7td d /4X z]2 (29)
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Appendix K - Sufficient Condition for Minimizing the Average

IMSE of the Image Field of the Multiplicative Phase Receiver

This appendix derives Eq (64). Eq (64) is the sufficient

condition that the optimum multiplicative phase of the MP

Receiver must satisfy for the average IMSE of the receiver

image field t.o be minimized. The average IMSE of the image

field generated bv the MP Receiver is

<IMSE> = f< [E(r 3 ) - 1 P( 3 )] 2 >dl 3  (63)
R3

where E( 3 ) is the field for free-space propagation and is

expressed as

3) = ffE(1 )hF 2 7l)hFs*(F 2,'3 ) d j d 2

+ fE N 2 )h FS(*FG2 2 3 )dP 2  (1K)
R2

A

Using Eqs (23), (51) and (53), the image field EMP( 3 )

generated by the 4P Receiver is expressed as

(C A
A
EMP(U 3) = E( 1 )eXpi ( 2 )]h 2 1(' 21r1 )

R2R1

x hFS (i2 P 3)dl dr 2  + 2JEN 
(F 2 )

x exp J( 2 )]hFS* ( 2 ,d 3 )d 2  (2K)
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where the optimum multiplicative phase Oo(r2 ) has been re-

placed by an optimum phase estimate ( 2 In Eqs (1K) and

(2K), E I(ir1 ) is an unknown but nonrandom object field in

aperture R 1 of Figure 10, E N (7 2 ) is a zero-mean, spatially

white noise field representing additive background noise,

h 2 1 (P',F) is the general impulse response, and h FS (P1,) is

the free-spaoe impulse response defined by Eq (47). Substi-

tuting Eqs (1K) and (2K) into Eq (63) and expanding yields

<IMS> ff f1 f f E I()EI (n) hFS iu) h FS *(Fi, -)
R 3R 2R 2R 1R1

x S3) S z i d drn dv dR dFr

-2Re [/Rfff E (7i)E I* (ii)h FS (7,ii)h FS * (Tr, 3 )

" di d~n d: dii dP3 ]

- 2Re [1fffEi (i)<E N*(Fi)><exp ~I1 4(Fo)]>

* hFS ( ,U) h FS* (:Ii 3 )h FS (Fi,l 3 )da d: dni dP3]

* f ff ffE I ()EI * Fn hFS 3)h FS 3d

x < exp J J(~ h 21j)h2 R fn
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x du dm dv dn r

- 2Re [ffffE(7) <E N*()>h FS (, 3 )

x h FS(Fi, 3 )<exp Ij i(~ - (i)Ih2

x dui d7. dR dr 3 ]

+ f ff< E N (;) E N ()>hFS 3 ~h FS n~ 3 )

x <expIj 0(71) - j 0(Fi)] > d: dR dF

; , Fne R1  71, nieR 2  (3K)

The third and fifth terms of Eq (3K) are zero because

the noise field is zero-mean. Now let the optimum phase

estimate, 0(: be written as

0 (r2 = Or2) + E~r)(4K)

where Oo(F2 ) is the optimum multiplicative phase and 40.12

is the phase error of the optimum phase estimate. Substitut-

ing Eq (4K) into Eq (3K) yields

<IMSE > R R R/RfE I ()E I(Fn) hFS v U) hFS (Rn)
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x h FS 3), 3 )hFs(7,F3 )dU dm d; dr dF3

R 3 R 2 R 2 R I RI 1F F

x h FS (Fl, F3)expj ()] exp j o)]1(,)

x dh 21 *dFFn d d3 d Rd-

3ff ff 2R E I -( 7)E I (Fn)h F S " ( ) h F S (  F 3 )

-- l

* (~i dmn d ud d d dd

* fffffEN(5)EI (n)hFS (v, )hFS(R,F3))
x d3 d 2 R, 2 R, 1

I c

* h 2 1 ( , U)h2 1 (i, E) > di dv din dR i

* f f< EN N (EN(Fi)>h FS 3)h F (IF 3)

* exp [jE ~~ - (R0)] <exp [j0~ - .()

x d: dii dF 2  5 , FnC R1  R, F- R2  (5K)
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where the second term of Eq (31.) is expanded using the iden-

tity Re(w) = (w+w* )/2 . To obtain a condition for

such that the average IMSE is minimized, take the derivative

of Eq (5K) with respect to C, let E = 0 , and set the

result equal to zero:

<IMSE >/ e=O fjR3(i)[ffffE 1 I)E I)

x hFS(7,U)hFS (v,r3)hFs , 3 )

fj ii)-[- ffffEI()EI (n)hFS a)
R2 3 2 R1

"h FS (-V, 13)h FS* (I, F3 )<exp[j o(R)]h 21 (F1, m) >

x dU dn d- dF 3 ] dn

R 2  
R3RR IF

hFS (,l 3)<exp[-jo(v) - Jo(n)]h21( ,u)

x h2 1 (vr)>d d d di 3 ]dF

* fjDh(i F. f f ffE (i) E Gih F
R 2  

R RR R I
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x h FS (i 3)<exp[j 00(71) - jo 0 Gi)]h 2 1 (;,' )

x h2 1 (rI,F)>d dm dv" dr3 ] dn

+ fj(Fi) [ff<E * ET()>h(, )

+Jj(i) [- ffE()E *(H~)>h * ()1RLERR 1 FS 3

x hFS(n,rQ)<exp[jO(0) -jo()]>d- dlr3 ]IdR = 0

u R, Rl v, n R2  (6K)

where the fourth term of Eq (5K) is expanded to give the

third and fourth terms of Eq (6K), and the fifth term of

Eq (5K) is expanded to give the fifth and sixth terms of

Eq (6K). Equation (6K) is true if the sum of the terms in

brackets is equal to zero. Setting the sum equal to zero

and performing a change of variables (a-.*-.-F) in the third

term of the sum yields

f fR f f EI (Z) EZ" (m)h FS (: , u) hFS* (O, 3)h hFS ( 3)
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ffffE *-(Z )E (Eh(; h)
Rj 3fl2 R IRS1 1JFSF S V~3 fFS

* ff1 F *(iE(ihNi )hs (7i)i
R R R R I FS 3 3

* <.~exp[-j 0 (V) + j (0 (n)Jh 2 1 0,5 )h 2 1 (EiFni)>

* dU dn d~ dF 3

- ffffE E( h FS , 3 ) hS(FF3)

x <exP[joo(T) 
-0()h21.0 )h2

x du cirn civ, dl'3

+ f f< E N)E N(R)>hS 3) h FS 3)

x < exp -; ) + J 0 0(F) > d: di;3

x< exp j[(0) J 0 (Ri) > d; d12  0

U, CER 1 F, nCR2  (7K)
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Note that the first and second terms, third and fourth

terms, and fifth and sixth terms of Eq (7K) are conjugate

pairs. Therefore, by using the identity Cw.-w*) = 211m(w)

Eq (7K) is simplified to

Im {fff EI (U)EI (i)hF (r 3 )h FS ( F, .3<exp [-J 00~)

x h2 1 [h FS exp i0( )h 2 1 7i) 1>

x dui drn dv dr3}

P Im

{ M4f f< El(1) E N ()>h FS ~ 3 )h FS (F r 3

x < exp [j 0 (~ - 0 >d; :

U, un CR 1 ,, i -R 2  (8K)

Since the additive background noise is spatially white

noise

<E N() E N( > := N 0 J-i(50)

Substituting Eq (50) into Eq (8K) gives
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* < exp[-i O()h,, Fn~)[1hFS(~i exp [i ~()

* h 21 (v i)] >di di dv- dr 3 }

- Im NI(\z)2 d 2  = 0 5, i FR1  2, nCR2

(9K)

The second term on the left side of Eq (9K) is zero

because the quantity in { } is real. Therefore, Eq (9K)

is simplified to

ImffffEI ()E I n h FS l 3 )h FS fD 3 )

x <exp[-j OO(Fi)]h 2 1(R i) [h S ( ) - exp[oo;]

X h21(( )] >dU d i dv di 3  = 0 ; 5, fiR 1  , iGR 2

(1OK)

For propagation through the turbulent atmosphere, the

general impulse response, h2 1(r', ), of Eq (10K) is replaced

by the turbulent impulse response, hTB(i',F). The turbulent

impulse response is written as

h TB (;',F) = h FS (F1 P)exp [X(F'r) + i 0&'1i:) (11K)

Substituting Eq (11K) into Eq (10K) yields Eq (64):
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Im ff ffE I Z)E I (Fn) h FS (v,)h FS (i,Mi)h FS 3)
R 3R 2R 1RI

x h FS (Fn, 1 3 )<exp [X(RF)]exp[-jo(i,ii) - o()

Y: exp[x(:,)]exp[j1o(,) + * ( )

xdii d~n d; d; 3 1 0 ; U, mnCR 1 FE iR 2 (64)



Appendix L - Minimum Average IMSE of the Image Field

of the Multiplicative Phase Receiver

This appendix derives Eq (65), which is the expression

for the minimum average IMSE of the image field generated by

the MP Receiver. The average IMSE of the image field gener-

ated by the MP Receiver is

<= s [ fffE1 (U)E1 (m)hFS(v,)hFS(FIn)
R 2  R,, 3R 2 RIR 1

x hFS (, 3 )hFS 
(n, 3)d

7i dmn dv dl3 ] d

R 2  R 3R 2R 1RI1

x h FS (FI, s3)<exp[-j 0o ( R) I h 2 1 * ( " ,im) >

x di dn d dP 3 ] di

x di dn d- di3 d n

+1f [if ffEj(Ejinh FS (:13 h FS (i.p 3 )R 2  R3R 2R 1I1
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x < [expJ [ ( - h21(7.ro( U)( , 2 1 (i, M >

x du n d; dT3  d n  + NoDfo

U, iCR 1 Z, FiCR 2

(IL)

Equation (IL) is obtained from Eq (3K) in the following

way. The third and fifth terms of Eq (3K) are zero because

the noise field is zero-mean. The second term of Eq (3K) is

expanded using the identity Re(w) = (w+w )/2 . The last

term of Eq (3K) becomes NoDfobecause the noise field is spa-

tially white noise. This is shown in Appendix J. The opti-
A

mum multiplicative phase estimate 0(: 2 ) is replaced by the

optimum multiplicative phase Oo(12). Finally, the integral

order is rearranged to facilitate a forthcoming substitution.

The optimum multiplicative phase which minimizes the

average IMSE given by Eq (IL) must satisfy the sufficient

condition derived in Appendix K:

x <exp[-ji o0(R],.,1,.-<fi>[,., : U) - e xp >o<>1

" h (< 2 1r > dil di0 d: di} -30 i 6 CR1  e R2

(10K)
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In its present form, Eq (10K) cannot be easily substi-

tuted into Eq (L). However, using the identity

Im(w) = -i(w-w )/2 , Eq (10K) is put in the more useful

form

x <1 0 (R)]h 21 (;, U)h2 1 (()idi)>d d d7 3

f f f f I (Ui)EI (Fn) hFS (v, U) hFS (r 3 )h FS f~ 3)

ffIf EI ()EI(M)hFS (,U()hhFS 3, 3)

R3 R2 RIR 1

x [j a 0 d- 0 ( h j, mfR 1  d, n(

Substituting Eq (2L) into the fourth term of Eq (IL)

yields
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<IMSE> ff1 ffE I (7)EI (Ii)h FS, 3 ) h FS( 3 )
R R R R R

"[h FS( 7, i) h FS Fn,) - 2 h FS (Rl, 77) <exp~i~~)

" h 2 1 ( II)> + <exp[jo0 ( ,) - jo0 (ii)]h 2 1 (; ii)

" h2 1 (RIE) > Idudmdvzdndr + N 0D

u,~ RiR ~,uE 2  (3L)

where a change of variables (5A~-.m and was performed

on the third term of Eq (1L) and the third term on the right

side of Eq (2L). For propagation through the turbulent atmos-

phere, the general impulse response, h 21 (F), of Eq (3L) is

replaced by the turbulent impulse response, h TB(~, The

turbulent impulse response is written as

Substituting Eq (4L) into Eq (3L) yields Eq (65):

<IMSE> = fffffEi (U)E I(Fn) hFS (,U)h FS (,r )
R 3R 2R 2 R1 R1

x h FS (r 3 )h FS (fnF 3 )1 2 < exp X(ti )]
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x exp[jo(;,) + io 0 (; )]> + <exp[X(: ,i)]

" exp [X(ii, Fn)] exp [j 5,i) + j 0() - ii, in-)

x expri 0 (ii)] >]dii drn d; dii dF3  + N oD f

5, F ER R 6, iR 2  (65)
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Appen.dix M - Average Coherent Transfer Function

of the Multiplicative Phase Receiver

This appendix derives Eq (66), which is the expression

for the average CTF of the MP Receiver when it is operating

so as to cancel turbulence-induced phase fluctuations. The

image field generated by the MP Receiver is

E b 3 )= hsE(2 Jexp Iq 0(F2]h F (r2 3)dr 2  (53)
R2

where hFS(B 2,F3 ) is the free-space impulse response defined

by Eq (47):
/

h Fs(7, 2 7 = exp[Jk(z + JF2-1 3 2/2z]/iXz (47)

The field E( 2 ) of Eq (53) is the input to the MP Re-

ceiver. By Eq (51) it is

E(r 2) = E0 (F2 ) + EN(F2 ) (51)

where E ( 2) is the output field of the propagation channel

and EN(F2 ) is a zero-mean, spatially white noise field. For

propagation through the turbulent atmosphere, the field E ( 2)

is expressed as

E0 (2) - 1Ei(l)hTB( 2 Fl)dP, (iM)
R

I '
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where E (I ) is an unknown but nonrandom object field in

aperture R of Figure 10 and where hTB(r 2,rI) is the turbulent

impulse response defined by Eq (49):

h TB (ir2,rl) = exp ijk(z + IJP2 iV 2/2z)]/j Xz

x exp [X(iP2 'P1) + i O(P 217i)] (49)

Substituting Eqs (51) and (114) into Eq (53) yields

E P P )= fE (P1 )exp [J Oo(:2 )]h TB( r2,1)
R21

x hFS ( 2 ,P3 )dP1 dP2 + fE (r 2 )R 2

x exp [J Oo(-P2)]h Fs* (1 2 , 3 )dP 2 42.

Since X(P',i) and O(PI',) are random variables, the

turbulent impulse response given by Eq (49) is a random func-

tion. Therefore, the image field given by Eq (2M) is also

random. On the average however the field is:

< E MP(P3 ) >  = fI fEi(!)<exp[J o(P2)]hTB(.2,Fl)>

xhFS (P2,t 3)dr6 dP2  (3M)

where the second term in Eq (3M) is dropped because the noise
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field is zero-mean. Substituting Eqs (47) and (49) into

Eq (3M) yields

exp(JkI 31 /2z)< D (P3 )> = (i/Xz)2 fexp(jkjFf/2z)

E. E lf exp [-jk ( 1 -i3 ).iz< exp [X(1 2 "1 1 >

* <exp 1~i a:2 1F1 ) - J$~,(i 2 )] >d:2 d~l (4M)

where the average of the right side of Eq (4M) has been

written as two separate averages of X(iF',i ) and (,)

since these are independent random variables (Ref 4:1374).

Furthermore, X(F',r) and OaP are Gaussian random varia-

bles (Ref 4:1374) writh the statistics given by Eqs (61), (71)

and (81). Using Eqs (61) and (91) it can be shown that

< exp [xi, 1 >= exp(- 7 2/12) (5M!)

When the MP Receiver is operating so as to cancel turbu-

lence-induced phase fluctuations, then 0,(F2) .= (;2

or equivalently, Oo(:2 ) = -O(F21O) .Substituting this

choice of Oo(F2) and Eq (5M) into Eq (4M) yields

exp(jk FI/2z)<E,.,(F,3)> - (1/Xz) 2 exp( 2 /2)
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X <exp[J(F 2 ,l) - Ji(F 2 ,0)]>di 2 dF 1  (6M)

Following the procedure used in Appendix I, the spatial

average on the right side of Eq (6M) is written as

< exp[j(P 2 2,1) - jO(i2 2 ,0)]> = exp[-D,(O,i:)/2] (7M)

where DO(0,1 1 ) is the phase structure function defined by

Eq (181). Substituting Eq (7M) into Eq (6M) yields

exp(Jk P31 /2z)<Ejp(F 3) =(/z)exp[-V2/2

*, fexpCjk 1F1. /2z, I(F I)exp [-D o(,)/2]
R 
1

where the wave number k in the inner integral is replaced by

2 1T/\ . It is shown in Appendix I that the inner integral

of Eq (8M) can be written as

f exp[ j2 Tr(j 1 -i 3 ).F,2 /Xz]d 2  d 2 Xz 1(7rl 1- 3 I 2/Xz)R 2

J
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Substituting Eq (9M) into Eq (814) yields Eq (66):

exp(jk i JI2 2z)<.'EDIp(~) (d /2X\z)exp(-7/2

" f exp~jk F 1 2 /2z)E I 1 )exp[I-Do (0, 1 )/2]
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Appendix N - Minimum Average IMSEs of Multiplicative

Phase Receiver Image Fields for Point

Sources and Incoherent Object Fields

This appendix shows that for a point source field the

sufficient condition for minimizing the average IMSE of the

image field ger crated by the TP Receiver is satisfied when

the optimum multiplicative phase is chosen so as to cancel

the turbulence-induced phase fluctuations. This statement

is qualified by saying that propagation is through the tur-

bulent atmosphere and the additive background noise is zero-

mean, spatially white noise. For the above choice of the

optimum phase, the minimum average INSE of the image field

of a point source field is derived. The result is Eq (70).

The process of showing that the sufficient condition is sat-

isfied and then calculating the minimum average IMSE of the

image field, is repeated for an isoplanatic, incoherent ob-

ject field with a real and even object intensity distribution

function. The minimum average IMSE expression for this case

is Eq (71).

When prope~ation is through the turbulent atmosphere

and the additive background noise is zero-mean, spatially

white noise, the sufficient condition that the optimum multi-

plicative phase must satisfy is

Im4 f fEI(ri)EI*(mR)h FS (U, U)h Fs (i, F) h Fs*(v I3)
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x h FS (ii, i3 )<exp[X(i~im)]exp-j(Fii ) - O(F)

x -exp [X Z.i)] exp [j Ui) j+

x d5 dFn dvd 3 }= 0 ; u, MER1  , RCR2  (64)

Equation (64) is derived in Appendix K. For a point

source field with a complex amplitude Eo, the term

E I()EI* (n) in Eq (64) is written as

E1 (u)EI (n) = E o * d() 6* 1n (M)

Substituting Eq (1N) into Eq (64) and letting

0o(i21 = -0(r2) gives

IM (I/ Xz)2 EE O J h FS*,3 )h FS (n, P3 ) <exp [X(Fn)]>

- <exp [XH) X(=)>] d 3  =0 ; v n R, 2 (2N)

Using Eqs (61) and (91) it can be shown that

<exp [X(R)]> = exp [_2/2] (3N)

< exp [X (H) + XU )> =exp 2(4N)
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Substituting Eqs (3N) and (4N) into Eq (2N) and using

Eq (47) to expand the free-space impulse responses yields

Im (1/X )z) 4E0 E0 [exp(-,v2/2) - exp(-V,)] 2/

x e x r [ - j 2 7 r ( Ti - ) . 3 / X z ] d 3  d ;; 0 , 25R 2

(5N)

where the order of integration is switched and the wave

number k in the impulse response is replaced by 2 /N. Note

that the inner integral of Eq (5N) is a two-dimensional spa-

tial Fourier transform of aperture R3 where

(-)/Xz = ? is a two-dimensional spatial frequency vector.

Since R is a circular aperture of radius d1 /2 (same as the

radius of R1 ), the inner integral is actually a Fourier-Bessel

transform of circ(2Ir 3 /dj) where

circ(21r 3 l /dj) =41; '3 d/

0 : otherwise (6N)

From a table of Fourier-Bessel transforms, the transform

of Eq (6N) is

0[c~rc2ir31/dl] = dXzJ,(7Iii-; Idi/Xz)/2Ii-v I (7N)

Replacing the inner integral of Eq (5N) with Eq (7N)
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yields

Im (/\z)4 EoEo*[exp(- 2/2) - exp( 2) ](dl\z/2)

x fJI(Cr i-Id1/Xz(1/lR- l)d } = 0 ; , R

2 (8N)

Since J1 (x) and all the other terms on the left side of

Eq (9M) are real, the left side is zero and the sufficient

condition is satisfied. Therefore, for a point source field

and the conditions stated at the beginning of this appendix,

Eq (64) is true when Oo(i2 ) = - O(F2) . For this choice

of Ao(i2 ) and the same conditions, the minimum average IMSE02

of the image of a point source field with a complex amplitude

E0 is, from Eq (65)

<IMSE > = (I/,\z)2EoEo*ffffhFS( 3 )h FS, 3 )

x 11- 2 <exp[X(Z)]> + <exp[X(') + X(i)]>]

x d' dn di3  + N0Dfo ; , n eR 2  (9N)

Substituting Eqs (3N) and (4N) into Eq (9N) and using

Eq (47) to expand the free-space impulse responses yields

<IMSE > (1/X\z) 4E E0  [1 2 exp(- 2 /2) + exp(-~)
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" ffexp[-J2rr(-p 3 /XZ) 7r I f
R3R2 

R2

" exp[I- j2WCr(F3/x Z) A jdi: 3  + N 0D f.

v r, HR R2  (ION)

where the wave number k in the impulse response is replaced

by 27r/X. Note that the second integro.l is a two-dimensional

spatial Fourier transform of circular aperture R2 where

-3 A z = -? is a two-dimensional spatial frequency vector.

Note that the third integral is a two-dimensional spatial

Fourier transform of the same aperture where !3/Az = ? is

a two-dimensional spatial frequency vector. Therefore, with

the proper argument changes Eq (7N) can be used twice in

Eq (ION) to give Eq (70):

<IMSE> = (d/2Xz) 2 EoE o* [1 - 2 exp() /2) + exp( )]

,* f [Jl(rd2IF'3 II/\z)] 2(1/ IN) 2dF 3R 3

* NoD fo (70)

Before the above process is repeated for an incoherent

object field, the object field is restricted to be isoplanatic.

For this additional restriction, Eq (64) becomes

(
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R R R R I~

x h FS (FI,P 3 ) <exp[X i)exp [-j~ii j(i)

x - exp X~)exp [j~ +j>

xd dr dv dp 3 } = 0 ; u, mR 1  E, R2  (11N)

For an incoherent object field with real and even object

intensity distribution function I(u), the term El(U)E I (m)

in Eq (12M) is written as a spatial average over the object

field

< EI(5)E I (M)> = 1(10 J-) (12N)

Substituting Eq (12N) into Eq (11N) and letting

- gives

Im I ff I )h FF 'pR J

x[<exp [X(i)]> - <exp[X(R) + X(:,]>]dp1 dv dp,} = 0

v, RR 2  (l3N)

Substituting Eqs (3N) and (4N) into Eq (13N) and using

Eq (47) to expand the free-space impulse responses yields
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Im{ (1/Xz)[exp(-V2/2) - ep- ff
R 13

x d 1 = 0 ; v, niCR 2  (14N)

where the order of integration is switched and the wave number

k in the impulse response is replaced by 2r/X . Note that

the second integral is a two-dimensional spatial Fourier

transform of circular aperture R2 where (:-Fi)/X z = ? is a

two-dimensional spatial frequency vector. Therefore, with

the proper argument change Eq (8M) is used in Eq (14N) to

give

Im{(1/Xz)[exp(-V /2) -exp(-V.)](d Xz/2)

x fJ1(T TR-; Ild 2/X z) 1fI

R2  R 1

x exp [ _j2 T( -i ) .1 /1 X z] d 71  dv7rI = 0 ;_ , nC 2 ( 1 NJ (15N)

Note that the inner integral of Eq (15N) is a two-

dimensional spatial Fourier transform of the object intensity

distribution function within circular aperture R1 . Since the

function is real and even, its transform is also real. Since

J1(x) and all other terms on the left side of Eq (15N) are
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real, the left side is zero and the sufficient condition is

satisfied. Therefore, for an isoplanatic, incoherent object

field with a real and even object intensity distribution func-

tion, and the conditions stated at the beginning of this ap-

pendix, Eq (64) is true when 0o(F 2 ) - -(r 2) . For

this choice of Oo(i2 ) and the same conditions, the minimum

average IMSE of the image of an isoplanatic, incoherent ob-

ject field with a real and even object intensity distribution

function I(YI) is, from Eq (65)

<IMSE> = f (fFS3)
R3 R2 R2 R 1

x hFS(nIF 3 ) 1-2 <exp[X( )]> + <exp[X ]

x exp [X(n)]>]di 1 d dn d' 3  + NoDfo

C R 2  (16N)

Substituting Eqs (3N) and (4N) into Eq (16N) and using

Eq (47) to expand the free-space impulse responses yields

<INSE> = (1/XZ) 4 [1- 2 exp(-V"/2) + exp(- 2)]

RR2
X f exp[- 2 7rei 3 _;1 ).Fi/Xz~dR dl 1 d!Z3  + N 0D fo2; v, (17N)
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where the order of integration is switched and the wave number

k in the impulse response is replaced by 2r/X. Note that

the third integral is a two-dimensional spatial Fourier trans-

form of circular aperture R2 where 1-F 3)/X z = -? is a

two-dimensional spatial frequency vector. Note that the

fourth integral is a two-dimensional spatial Fourier trans-

form of the same aperture where (7:3-F 1)/>z = ? is a two-

dimensional spatial frtquency vector. Therefore, with the

proper argument changes Eq (7N) is used twice in Eq (17N) to

give Eq (71):

<IMSE>= (d 2 /2Xz)2 [1 - 2 exp(-V/2)+ exp(-2)]

RR 1

x dFi1 dF3  + NoDfo (71)
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